精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则b4,b5,b7,b8的一个不等关系是(  )
A.b4+b8>b5+b7B.b5+b7>b4+b8
C.b4+b7>b5+b8D.b4+b5>b7+b8
在等差数列{an}中,an>0,公差为d>0,所以{an}为各项为正数的递增数列,
由于4+6=3+7时有a4•a6>a3•a7
而在等比数列{bn}中,bn>0,q>1,则{bn}为各项为正数的递增数列,
由于4+8=5+7,所以应有b4+b8>b5+b7
∴b4+b8>b5+b7
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

用反证法证明:已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线l与x、y轴分别交于A(a,0),B(0,b),ab≠0,则直线l的截距式方程为
x
a
+
y
b
=1
,若平面α与x、y、z轴分别交于A(a,0,0),B(0,b,0),C(0,0,c),abc≠0,则平面α的截距式方程为
x
a
+
y
b
+
z
c
=1
;由点P(x0,y0)到直线Ax+By+C=0的距离d=
|Ax0+By0+C|
A2+B2
类比到空间有:点M(x0,y0,z0)到平面Ax+By+Cz+D=0的距离d=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

法国数学家费马观察到221+1=5222+1=17223+1=257224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×
6
700417
不是质数,从而推翻了费马猜想,这一案例说明(  )
A.归纳推理,结果一定不正确
B.归纳推理,结果不一定正确
C.类比推理,结果一定不正确
D.类比推理,结果不一定正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面中△ABC的角C的内角平分线CE分△ABC面积所成的比
S△ABC
S△BEC
=
AC
BC
,将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三角形内切圆的半径r与它的高h的关系是:r=
1
3
h,把这个结论推广到空间正四面体,则正四面体内切球的半径r与正四面体高h的关系是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一段“三段论”推理:对于可导函数f(x),若f(x)在区间(a,b)上是增函数,则f′(x)>0对x∈(a,b)恒成立,因为函数f(x)=x3在R上是增函数,所以f′(x)=3x2>0对x∈R恒成立.以上推理中(  )
A.大前提错误B.小前提错误
C.推理形式错误D.推理正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在正整数集上的函数,且满足:“当 成立时,总可推出成立”。那么,下列命题总成立的是(  )
A.若成立,则成立
B.若成立,则成立
C.若成立,则当时,均有成立
D.若成立,则当时,均有成立

查看答案和解析>>

同步练习册答案