精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

【答案】D
【解析】解:f(x)= =1﹣ , ①当t+1=0即t=﹣1时,f(x)=1,
此时f(a),f(b),f(c)都为1,能构成一个正三角形的三边长,满足题意;
②当t+1>0即t>﹣1时,f(x)在R上单调递增,
﹣t<f(x)<1,∴﹣t<f(a),f(b),f(c)<1,
由f(a)+f(b)>f(c)得﹣2t≥1,
解得﹣1<t≤﹣
③当t+1<0即t<﹣1时,f(x)在R上单调递减,
又1<f(x)<﹣t,由f(a)+f(b)>f(c)得2≥﹣t,
即t≥﹣2,所以﹣2≤t<﹣1.
综上,t的取值范围是﹣2
故选:D.
【考点精析】通过灵活运用函数的值,掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,cosA=﹣ ,cosB=
(1)求sinA,sinB,sinC的值
(2)设BC=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).
(1)求BC边上的高所在的直线方程;
(2)设AC中点为D,求△DBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.
(1)求x+y能被3整除的概率;
(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为正方形的四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,PA⊥AD,PA=AD,则异面直线PB与AC所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为 ,圆心在直线l1:x﹣y+1=0上的圆C与直线l2 x﹣y+1﹣ =0相交于M,N两点,且|MN|=
(1)求圆C的标准方程;
(2)当圆心C的横、纵坐标均为整数时,若对任意m∈R,直线l3:mx﹣y+ +1=0与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.田忌的上马优于齐王的中马,劣于齐王的上马,田忌的中马优于齐王的下马,劣于齐王的中马,田忌的下马劣于齐王的下马.现各出上、中、下三匹马分组进行比赛,如双方均不知对方马的出场顺序,则田忌获胜的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心M在x轴上,半径为1,直线 ,被圆M所截的弦长为 ,且圆心M在直线l的下方. (Ⅰ)求圆M的方程;
(Ⅱ)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

同步练习册答案