精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax(a>0,a≠1),其导函数为f′(x),满足f(x)<f′(x)对于任意实数x恒成立,则(  )
A.f(1)>e,f(2012)>e2012B.f(1)>e,f(2012)<e2012
C.f(1)<e,f(2012)>e2012D.f(1)<e,f(2012)<e2012

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,求导g′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,从而可得a>e,从而解得.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,故g′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f(x)<f′(x)对于任意实数x恒成立,
∴g′(x)>0对于任意实数x恒成立,
∴g(x)=$\frac{f(x)}{{e}^{x}}$=$(\frac{a}{e})^{x}$在R上是增函数,
故$\frac{a}{e}$>1,即a>e,
∴f(1)=a>e,f(2012)=a2012>e2012
故选:A.

点评 本题考查了导数的综合应用,关键在于构造函数g(x)=$\frac{f(x)}{{e}^{x}}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.以下四个命题中:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8;
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关”的把握程度越大.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数Z=(a2-1)+(a+1)i为纯虚数,则$\frac{{a+{i^{2007}}}}{1+ai}$的值为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设α∈R,函数f(x)=($\frac{1}{3}$)x-1-a的图象一定经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在${(1-{x^2}+\frac{2}{x})^7}$的展开式中的x3的系数为-910.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.下列函数可以看成由哪些简单函数复合而成?
(1)y=arcsin$\sqrt{sinx}$;
(2)y=esin2x
(3)y=log24cosx;  
(4)y=arctan[tan3(a2+x2)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(sinx+$\sqrt{3}$cox)2-2.
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(2)若函数g(x)=-(1+λ)f2(x)-2f(x)+1在[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递减,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆C的焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)过点M(m,0)作圆x2+y2=1的切线l交曲线C于A,B两点,试探究|AB|是否有最大值,若有,求出|AB|的最大值及相应的实数m;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在多面体ABC-A1B1C1中,AA1$\underset{∥}{=}$BB1,B1C1$\underset{∥}{=}$$\frac{1}{2}$BC,求证:AB1∥平面 A1C1C.

查看答案和解析>>

同步练习册答案