精英家教网 > 高中数学 > 题目详情
19.已知α,β分别满足α•lgα=1004,β•10β=1004,则α•β等于(  )
A.2$\sqrt{1004}$B.1004C.2$\sqrt{2008}$D.2008

分析 令10β=t,化指数式为对数式得到β=lgt,则tlgt=1004,由此可知,α=t,再结合β•10β=1004可求得αβ的值.

解答 解:∵β•10β=1004,
令10β=t,则β=lgt,
∴t•lgt=1004,
又α•lgα=1004,
tlgt=1004,
由方程xlgx=1004,
得lgx=$\frac{1004}{x}$,
从y=lgx,y=$\frac{1004}{x}$的图象来看,它们的图象只能有一个交点,
即方程xlgx=1004只能有一个解,
∴α=t,即α=10β
∵β•10β=1004,
∴αβ=1004.
故选B.

点评 本题考查了对数函数的图象和性质,考查了对数式和指数式的互化,考查了学生的灵活变形能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线y=ax2(a≠0)的准线方程为y=-1,焦点坐标为F(0,1).
(1)求抛物线的方程;
(2)设F是抛物线的焦点,直线l;y=kx+b(k≠0)与抛物线相交于A,B两点,记AF,BF的斜率之和为m,求常数m,使得对于任意的实数k(k≠0),直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为发展低碳经济,保护环境,某企业在政府部门的支持下,新上了一个“工业废渣处理再利用”的环保项目,经测算,该项目每月的处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:
y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-100{x}^{2}+7740x,x∈[120,160)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[160,600)}\end{array}\right.$且每处理一吨“工业废渣”,可得到能再利用的产品价值200元,若该项目不获利,政府将给予补贴.
(1)当x∈[160,300)时,判断该项日能否获利,如果获利,求出最大利涧;加果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)求该项目每月出力量为多少吨时,每吨的平均处理成本最低.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,并且a2=2,S5=15,数列{bn}满足:b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}$bn,记数列{bn}的前n项和为Tn
(1)求数列{an},{bn}的通项公式及前n项和;
(2)记集合M={n|$\frac{2{S}_{n}(2-{T}_{n})}{n+2}$≥λ,n∈N+},若M中的元素个数为4,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为调查当前干部的作风情况,某市检察机关从该市干部名单库中随机抽取100名干部,通过问卷调查,实际考核等方式,对每个干部依次考核成绩,分A,B,C,D,E五个等级进行测评,最后对数据做如下统计:
成绩[50,60)[60,70)[70,80)[80,90)[90,100)合计 
 等级 E D C B A 
 频数 2 24 36 30 8 100
 频率 0.02 0.24 0.36 0.3 0.081
(1)根据上级要求,对考核测评为E级的干部,将从干部名单库中清除;对考核测评为D级的干部,要求进行教育整改;而对考核测评为A级的干部,将授予“人民楷模”的称号,现从该市干部中,随机抽取3人,求这三人来自不同的考核测评等级,且都不是被清除人的概率(精确到小数点后三位);
(2)若从该市干部中,随机抽取5人,求抽取的是“人民楷模”的人数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\sqrt{3}$cosx-sinx=-$\frac{6}{5}$,则sin($\frac{π}{3}$-x)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2是椭圆上的左、右两焦点且在x轴上.
(1)过椭圆的右焦点F1作x轴的垂线交椭圆于P点,点A、B分别是椭圆与x轴负半轴、y轴正半轴的交点,且PF2∥AB,求椭圆的离心率;
(2)过椭圆的右焦点F2作x轴的垂线交椭圆于A、B两点,若$\overline{OA}$•$\overline{OB}$=0求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于函数f(x)=log${\;}_{2}^{2}$x-a•log2x2,x∈[1,4],a∈R.
(1)求函数f(x)的最小值g(a);
(2)是否存在实数m、n,同时满足以下条件:①m>n≥0;②当函数g(a)的定义域为[n,m]时,值域为[-m,-n],若存在,求出所有满足条件的m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.当点(-6,4)到直线l:(m-2)x-y+2m+2=0的距离最大时m的值为0.

查看答案和解析>>

同步练习册答案