精英家教网 > 高中数学 > 题目详情
20.广告公司为某游乐场设计某项设施的宣传画,根据该设施的外观,设计成的平面图由半径为2m的扇形AOB和三角区域BCO构成,其中C,O,A在一条直线上,∠ACB=$\frac{π}{4}$,记该设施平面图的面积为S(x)m2,∠AOB=xrad,其中$\frac{π}{2}$<x<π.
(1)写出S(x)关于x的函数关系式;
(2)如何设计∠AOB,使得S(x)有最大值?

分析 (1)首先,求解三角形和扇形的面积,然后,求和即可得到相应的解析式;
(2)根据三角函数辅助角公式和导数的计算等知识求解其最大值即可.

解答 解:(1)∵扇形AOB的半径为2m,∠AOB=xrad,
∴S扇形=$\frac{1}{2}$x•22=2x,
过点B作边AC的垂线,垂足为D,如图所示:

则∠BOD=π-x,
∴BD=2sin(π-x)=2sinx,OD=2cos(π-x)=-2cosx,
∵∠ACB=$\frac{π}{4}$,
∴CD=BD=2sinx,
∴S△BOC=$\frac{1}{2}$CO•BD=$\frac{1}{2}$(2sinx-2cosx)×2sinx=2sin2x-2sinxcosx=1-cos2x-sin2x,
∴S(x)=1-cos2x-sin2x+2x,
(2)根据(1),得到S(x)=1-cos2x-sin2x+2x,
∴S′(x)=2sin2x-2cos2x+2,
令S′(x)=0,
∴2$\sqrt{2}$sin(2x-$\frac{π}{4}$)=-2,
∴sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,
∴2x-$\frac{π}{4}$=$\frac{5π}{4}$,
∴x=$\frac{3π}{4}$,
根据实际意义知,当x=$\frac{3π}{4}$时,该函数取得最大值,
故设计∠AOB=$\frac{3π}{4}$时,此时S(x)有最大值.

点评 本题重点考查了三角形的面积公式、辅助角公式、三角函数的图象与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若a≤1,则$\sqrt{(a-1)^{2}}$化简后为(  )
A.a-1B.1-aC.a+1D.-a-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos(π+α)=-$\frac{1}{2}$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,M是△ABC的边AB的中点,若$\overrightarrow{CM}=\overrightarrow a,\overrightarrow{CA}$=$\overrightarrow b$,则$\overrightarrow{CB}$=(  )
A.$\overrightarrow a-2\overrightarrow b$B.$\overrightarrow a+2\overrightarrow b$C.$2\overrightarrow a-\overrightarrow b$D.$2\overrightarrow a+\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列命题:
①在△ABC中,“A>30°”是“$sinA>\frac{1}{2}$”的充分不必要条件;
②已知$\overrightarrow{AB}$=(3,4),$\overrightarrow{CD}$=(-2,-1),则$\overrightarrow{AB}$在$\overrightarrow{CD}$上的投影为-2;
③已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,则“p∧¬q”为假命题;
④“若x2+x-6≥0,则x>2”的否命题;
⑤已知函数f(x)=sin(ωx+$\frac{π}{6}$)-2(ω>0)的导函数的最大值为3,则函数f(x)的图象关于x=$\frac{π}{3}$对称.
其中真命题的序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f(x)是R上的减函数,且f(x)的图象经过点A(0,4)和点B(3,-2),则当不等式|f(x+t)-1|<3的解集为(-1,2)时,则t的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.其左右焦点分别为F1、F2
(1)若动点T(x,y)满足$\overrightarrow{T{F}_{1}}$•$\overrightarrow{T{F}_{2}}$=2x2+3,求动点T的轨迹方程;
(2)若S为椭圆C上一动点,S点在x轴上的投影是D,求DS的中点W的轨迹方程;
(3)过椭圆C内一点A(1,1)作动弦MN,求MN中点Q的轨迹方程;
(4)过点P(3,0)的直线l与椭圆C交于不同的两点A,B,O为坐标原点,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$、$\overrightarrow{b}$为平面向量,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{4}$,$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面内,点P在以O为顶点的直角内部,A,B分别为两直角边上两点,已知$|{\overrightarrow{OP}}|=2$,$\overrightarrow{OP}•\overrightarrow{OA}=2$,$\overrightarrow{OP}•\overrightarrow{OB}=1$,则当|AB|最小时,sin∠AOP=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案