【题目】在△ABC中,角A,B,C所对的分别为a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面积为 ,求△ABC的周长.
【答案】
(1)解:∵acosB=(3c﹣b)cosA,∴sinAcosB=(3sinC﹣sinB)cosA,∴sin(A+B)=sinC=3sinCcosA,sinC≠0,∴cosA= ,sinA= = .
∵ ,∴
(2)解:∵△ABC的面积为 ,∴ ,得bc=3,
∵ ,∴ ,
∴ ,即(b+c)2=16,
∵b>0,c>0,∴b+c=4,
∴△ABC的周长为
【解析】(1)由acosB=(3c﹣b)cosA,利用正弦定理可得:sinAcosB=(3sinC﹣sinB)cosA,再利用和差公式、诱导公式可得cosA= ,sinA= ,再利用正弦定理即可得出.(2)由△ABC的面积为 ,可得bc=3,再利用余弦定理即可得出.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣m|﹣|x+3m|(m>0). (Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)对于任意实数x,t,不等式f(x)<|2+t|+|t﹣1|恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上是增函数,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
则当x∈[2,+∞)时,
x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数
即,f(2)=4+a>0
解得﹣4<a≤4
故选:C.
【点睛】
本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.
【题型】单选题
【结束】
10
【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 椭圆C过点P(1, ),直线PF1交y轴于Q,且 =2 ,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1 , k2 , 且k1+k2=2,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合: ①M={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)满足,点M的轨迹为曲线E.
(1)求E的标准方程;
(2)过点F(1,0)作直线交曲线E于P,Q两点,交轴于R点,若,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x-4| (x∈R)
(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;
(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.
(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为 ,试确定点M在EC上的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com