精英家教网 > 高中数学 > 题目详情
设f(x)=
2ex-1,x<2
log3(x2-1),x≥2
,则f(f(2))的值为(  )
A.0B.1C.2D.3
f(f(2))=f(log3(22-1))=f(1)=2e1-1=2,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)满足:f(p+q)=f(p)•f(q),f(1)=2,则:
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,如果两点A(a,b),B(-a,-b)函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
cos
π
2
x,x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第x天(1≤x≤20,x∈N)的销售价格(单位:元)为p=
44+x,1≤x≤6
56-x,6<x≤20
,第x天的销售量为q=
48-x,1≤x≤8
32+x,8<x≤20
,已知该商品成本为每件25元.
(Ⅰ)写出销售额t关于第x天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)<0恒成立.
(1)判断f(x)的奇偶性及单调性,并对f(x)的奇偶性结论给出证明;
(2)若函数f(x)在[-3,3]上总有f(x)≤6成立,试确定f(1)应满足的条件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一个给定的正整数,a∈R).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)求⊙P与y轴的另一个交点D的坐标;
(2)如果AB恰好为⊙P的直径,且△ABC的面积等于,求m和k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式(mx-1)[3m 2-( x + 1)m-1]≥0对任意恒成立,则实数x的值为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,则的值为( )
                                 

查看答案和解析>>

同步练习册答案