精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【答案】(1).

(2).

【解析】分析:(1)在区间上单调递增,则在区间上恒成立,而当时,,故从而可得结果;(2)在区间上,函数的图象恒在曲线下方等价于在区间上恒成立利用导数研究函数的单调性,利用单调性求得函数的最大值,可证明时不合题意, 时,只需,从而可得结果.

详解(1)在区间上单调递增,

在区间上恒成立.

,而当时,,故.

所以.

(2)令,定义域为.

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.

①若,令,得极值点

,即时,在上有,此时在区间上是增函数,并且在区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;

②若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足,由此求得的范围是.

综合①②可知,当时,函数的图象恒在直线下方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2bx+a(a,b∈R)
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;
(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名马拉松比赛志愿者,其中志愿者通晓日语,通晓俄语,通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.

列出基本事件;

被选中的概率;

不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为1的正方形中,分别为边上的点,且的周长为2.

(1)求线段长度的最小值;

(2)试探究是否为定值,若是,给出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.

)求的分布列;

)若要求,确定的最小值;

)以购买易损零件所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点P(3,1)在椭圆上,△PF1F2的面积为2
(1)①求椭圆C的标准方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公园游园活动中有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中:①求摸出3个白球的概率;②求获奖的概率;
(2)在两次游戏中,记获奖次数为X:①求X的分布列;②求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点,直线l,设圆C的半径为1,圆心C在直线l上.

过点A作圆C的切线APP为切点,当切线AP最短时,求圆C的标准方程;

若圆C上存在点M,使,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人用一网箱饲养中华鲟,研究表明:一个饲养周期,该网箱中华鲟的产量(单位:百千克)与购买饲料费用)(单位:百元)满足:.另外,饲养过程中还需投入其它费用.若中华鲟的市场价格为元/千克,全部售完后,获得利润元.

(1)求关于的函数关系式;

(2)当为何值时,利润最大,最大利润是多少元?

查看答案和解析>>

同步练习册答案