【题目】已知函数
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【答案】(1).
(2).
【解析】分析:(1)在区间上单调递增,则在区间上恒成立,即,而当时,,故,从而可得结果;(2) 令,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立,利用导数研究函数的单调性,利用单调性求得函数的最大值,可证明时不合题意, 当时,只需,从而可得结果.
详解:(1)在区间上单调递增,
则在区间上恒成立.
即,而当时,,故.
所以.
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
①若,令,得极值点,
当,即时,在上有,此时在区间上是增函数,并且在区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意;
②若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,由此求得的范围是.
综合①②可知,当时,函数的图象恒在直线下方.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣2bx+a(a,b∈R)
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;
(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有8名马拉松比赛志愿者,其中志愿者,,通晓日语,,,通晓俄语,,通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.
列出基本事件;
求被选中的概率;
求和不全被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为1的正方形中,分别为边上的点,且的周长为2.
(1)求线段长度的最小值;
(2)试探究是否为定值,若是,给出这个定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求的分布列;
(Ⅱ)若要求,确定的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点P(3,1)在椭圆上,△PF1F2的面积为2 .
(1)①求椭圆C的标准方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公园游园活动中有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中:①求摸出3个白球的概率;②求获奖的概率;
(2)在两次游戏中,记获奖次数为X:①求X的分布列;②求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点,直线l:,设圆C的半径为1,圆心C在直线l上.
过点A作圆C的切线AP且P为切点,当切线AP最短时,求圆C的标准方程;
若圆C上存在点M,使,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人用一网箱饲养中华鲟,研究表明:一个饲养周期,该网箱中华鲟的产量(单位:百千克)与购买饲料费用()(单位:百元)满足:.另外,饲养过程中还需投入其它费用.若中华鲟的市场价格为元/千克,全部售完后,获得利润元.
(1)求关于的函数关系式;
(2)当为何值时,利润最大,最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com