精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(其中),.

1)若对定义域内的任意实数x恒成立,求实数a的取值范围;

2)若有两个极值点,且,求的取值范围.

【答案】1;(2.

【解析】

1)由整理可得,,利用导函数求得的最小值,即可求解;

2)先对求导,转化问题为方程有两个正根,,且,可得,解得,再由韦达定理可得,解得,则可整理,,进而求得的范围即可.

1)因为,即,

所以,

,则,

,则上的增函数,

,故时,时,

所以当时,;当时,,

上单调递减,在上单调递增,

时,的极小值为1,

因为,所以,

a的取值范围是.

2,

,

因为有两个极值点,,且,

则方程有两个正根,,且,

所以,解得,

,得,即,

所以

,

,

,所以上为减函数,

所以,所以取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),曲线轴交于两点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

1)求直线的普通方程及曲线的极坐标方程;

2)若直线与曲线在第一象限交于点,且线段的中点为,点在曲线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电信运营公司为响应国家5G网络建设政策,拟实行5G网络流量阶梯定价.每人月用流量中不超过(一种流量计算单位)的部分按2收费;超出的部分按4收费.从用户群中随机调查了10000位用户,获得了他们某月的流量使用数据.整理得到如下的频率分布直方图:

1)若为整数,依据本次调查,为使80以上用户在该月的流量价格为2至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,试估计用户该月的人均流量费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由nnN*)个正整数构成的集合A{a1a2an}a1a2ann≥3),记SAa1+a2+…+an,对于任意不大于SA的正整数m,均存在集合A的一个子集,使得该子集的所有元素之和等于m.

1)求a1a2的值;

2)求证:a1a2an成等差数列的充要条件是

3)若SA2020,求n的最小值,并指出n取最小值时an的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2017年1月18日开始,支付宝用户可以通过“扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福、敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

合计

30

10

40

35

5

40

合计

65

15

80

(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?

(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;

(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.

参考公式: .

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为1的正三角形,点P所在的平面内,且a为常数),下列结论中正确的是( )

A.时,满足条件的点P有且只有一个

B.时,满足条件的点P有三个

C.时,满足条件的点P有无数个

D.a为任意正实数时,满足条件的点总是有限个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点,分别过作抛物线的切线,两切线交于点.

1)若直线变动时,点始终在以为直径的圆上,求动点的轨迹方程;

2)设圆,若直线与圆相切于点(点在线段上).是否存在点使得?若存在,求出点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

1)若恰有两个零点,求实数的取值范围;

2)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.

查看答案和解析>>

同步练习册答案