精英家教网 > 高中数学 > 题目详情

【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .证明:构造函数f(x)=(x﹣a12+(x﹣a22=2x2﹣2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22﹣8≤0,所以a1+a2 .根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为

【答案】a1+a2+…+an
【解析】解:构造函数f(x)=(x﹣a12+(x﹣a22+…+(x﹣an2=nx2﹣2(a1+a2+…+an)x+1,
由对一切实数x,恒有f(x)≥0,所以△≤0,得a1+a2+…+an
所以答案是:a1+a2+…+an
【考点精析】认真审题,首先需要了解类比推理(根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1, ,其前n项和为Sn , 则
(1)a5=
(2)S2n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函数f(x)的解析式;
(2)若f(x)在区间(﹣∞,2]上是减函数,且对于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求实数m的取值范围;
(3)若f(x)在区间[3,5]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是( )

②f(x)=x与
③f(x)=x0
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 , y1),B(x2 , y2)均在抛物线上.

(1)写出该抛物线的方程及其准线方程;
(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的单调区间;
(2)若函数f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax(a>0且a≠1)与函数y=(a﹣1)x2﹣2x﹣1在同一坐标系内的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=xf(x)+4x的单调递增区间.

查看答案和解析>>

同步练习册答案