精英家教网 > 高中数学 > 题目详情
已知平面向量
OA
OB
的夹角θ∈[60°,120°],且|
OA
|=|
OB
|=3
OP
=
1
3
OA
+
2
3
OB
,则
|OP|
的取值范围是
[
3
7
]
[
3
7
]
分析:根据向量
OA
OB
的模长和夹角的范围,结合数量积公式得
OA
OB
的取值范围.再将向量
OP
平方,由数量积
OA
OB
的取值范围得
OP
2的范围,最后开方即可得到,
|OP|
的取值范围.
解答:解:∵
OA
OB
=
|OA|
|OB|
cosθ
=9cosθ,cosθ∈[cos120°,cos60°],
OA
OB
的取值范围是[-
9
2
9
2
]
OP
=
1
3
OA
+
2
3
OB

|OP|
2
=(
1
3
OA
+
2
3
OB
)2=
1
9
OA
2
+
4
9
OA
OB
+
4
9
OB
2
=1+
4
9
OA
OB
+4=5+
4
9
OA
OB

OA
OB
∈[-
9
2
9
2
],
∴当
OA
OB
=-
9
2
时,
|OP|
2
有最小值3;当
OA
OB
=
9
2
时,
|OP|
2
有最大值7
因此,
|OP|
的最小值是
3
,最大值为
7

故答案为:[
3
7
]
点评:本题给出两个向量的长度和夹角的范围,求它们的一个线性组合的长度取值范围,考查了平面向量数量积、模与夹角的公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐标及|
1
2
BC
|

(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF

(3)求向量
DB
DC
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是
①②③
①②③

①平面向量
a
b
的夹角为60°,
a
=(2,0),|
b
|=1,则|
a
+
b
|=
7

②已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)其中θ∈(π,
2
)则
a
b

③O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
),λ∈(0,+∞),则直线AP一定通过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内一动点P到定点F(2,0)的距离与点P到y轴的距离的差等于2.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1),B(x2,y2)(x1<x2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
OA
=(1,4)
OB
=(-1,6)
,向量
OP
=
OA
+2(1-λ) 
OB
,λ∈R,O为坐标原点,
(1)求当
OP
AB
时,
OP
的坐标;
(2)当|
OP
|取最小值时,求
OP
AB
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意平面向量
AB
=(x,y)
,将
AB
绕其起点沿顺时针方向旋转θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做将点B绕点A沿顺时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(1+
2
,2-2
2
)
,将点B绕点A沿顺时针方向旋转
π
4
得到点P,求点P的坐标;
(2)设平面内曲线3x2+3y2+2xy=4上的每一点绕坐标原点O沿顺时针方向旋转
π
4
得到的点的轨迹是曲线C,求曲线C的方程;
(3)过(2)中曲线C的焦点的直线l与曲线C交于不同的两点A、B,当
OA
OB
=0
时,求△AOB的面积.

查看答案和解析>>

同步练习册答案