精英家教网 > 高中数学 > 题目详情
9.若f(x)=logax在(0,+∞)上是减函数,则a的取值范围是(0,1).

分析 由对数函数的性质可得0<a<1.

解答 解:∵f(x)=logax在(0,+∞)上是减函数,
∴0<a<1;
故答案为:(0,1).

点评 本题考查了对数函数的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其中一个交点为P,则|PF2|的值为(  )
A.$\frac{47}{5}$B.$\frac{34}{5}$C.$\frac{18}{5}$D.$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来2倍,然后再将整个图象沿x轴左平移$\frac{π}{2}$个单位,沿y轴向下平移1个单位,得到函数y=$\frac{1}{2}$sinx,则y=f(x)的表达式为(  )
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域:
(1)y=$\sqrt{1-lgx}$;
(2)y=log2(x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知lgx=3,则x=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在[-1,0)∪(0,1]上的奇函数.且当0<x≤1时.f(x)=lg(x2+9),则(1)函数f(x)的表达式为$\left\{\begin{array}{l}{lg(x^2+9),0<x≤1}\\{-lg(x^2+9),-1≤x<0}\end{array}\right.$(2)函数f(x)最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知log52=a,log53=b,用a、b表示log524;
(2)已知lg2=m,lg3=n,用m、n表示lg$\sqrt{4.5}$;
(3)已知lg25=x,用x表不lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个圆柱的主视图的周长为12,且底面半径为1,则该圆柱的表面积为(  )
A.B.10πC.16πD.$\frac{8}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定长为4的线段MN的两端点在抛物线y2=x上移动,设点P为线段MN的中点,则P到y轴距离的最小值为$\frac{7}{4}$.

查看答案和解析>>

同步练习册答案