精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在处的切线过点 .

(1)若,求函数的极值点;

(2)设是函数的两个极值点,若,证明: .(提示

【答案】(1)或2;(2)见解析

【解析】试题分析:(1)求导,则.又,曲线处的切线过点利用斜率相等,可得.,又,可得,则,可得函数的极值点

(2)由题是方程的两个根,则 ,由,可得 ,∴是函数的极大值, 是函数的极小值,∴要证,只需,计算整理可得 ,令,则,设,利用导数讨论函数

的性质即可得证

试题解析;∵,∴.又,曲线处的切线过点.∴,得.

(1)∵,∴,令,得

解得或2,∴的极值点为或2.

(2)∵是方程的两个根,∴ ,∵,∴ ,∴是函数的极大值, 是函数的极小值,∴要证,只需 ,令,则,设 ,则,函数上单调递减,∴,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a∈R,解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和为Sn , 且满足
(1)计算a1 , a2 , a3的值,并猜想{an}的通项公式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=log x.
(1)求 f(﹣4)的函数值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点. (Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线在点处的切线斜率为3,且时, 有极值。

1)求函数的解析式;

2)求函数上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千/小时)之间有函数关系:
(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01千辆);
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

同步练习册答案