精英家教网 > 高中数学 > 题目详情
14.已知f(x)是定义在R内的偶函数,且它在[0,+∞)内单调递增,那么使f(-2)≤f(a)成立的实数a的取值范围是a≤-2或a≥2.

分析 利用函数是偶函数得到不等式f(-2)≤f(a)等价为f(2)≤f(|a|),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.

解答 解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.
∴不等式f(-2)≤f(a)等价为f(2)≤f(|a|),
即2≤|a|,
∴a≤-2或a≥2,
故答案为:a≤-2或a≥2.

点评 本题主要考查函数奇偶性和单调性的应用,利用函数是偶函数的性质得到f(a)=f(|a|)是解决偶函数问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC的内角A,B,C所对的边长分别为a,b,c,cosA=$\frac{12}{13}$,bc=182.
(1)求△ABC的面积;
(2)若c-b=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(x,y)是抛物线y2=x上任意一点,且点P在直线ax+y+a=0的上面,则实数a的取值范围为a<$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=-$\frac{5}{4}$,求2+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=1-$\frac{2}{{a}^{x}+1}$(a>1).
(1)求证函数f(x)为奇函数;
(2)求函数f(x)的值域;
(3)证明f(x)在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B,若椭圆上存在点P,使$\overrightarrow{PA}•\overrightarrow{PB}=0$,则椭圆离心率e的取值范围为(  )
A.$[\frac{1}{2},1)$B.$[\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,一根木棒AB长为2米,斜靠在墙壁AC上,∠ABC=60°,若AB滑动至A1B1位置,且AA1=($\sqrt{3}$-$\sqrt{2}$)米,则AB中点D所经过的路程为$\frac{π}{12}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:?x∈R,使2x>x;命题q:?x∈(0,$\frac{π}{2}$),0<sinx<1,下列是真命题的是(  )
A.p∧(¬q)B.(¬p)∨(¬q)C.p∨(¬q)D.(¬p)∧q

查看答案和解析>>

同步练习册答案