精英家教网 > 高中数学 > 题目详情

【题目】某港湾的平面示意图如图所示,分别是海岸线上的三个集镇,位于的正南方向处,位于的北偏东方向.随着经济的发展,为缓解集镇的交通压力,拟在海岸线上分别修建码头,开辟水上航线,勘测时发现:以为圆心,为半径的扇形区域为浅水区,不适宜船只航行.

1)能否求出集镇间的直线距离?

2)根据勘测要求,要使之间的直线航线最短,直线与圆应满足什么关系?

3)应怎样确定码头的位置,才能使得之间的直线航线最短?

【答案】1;(2)直线与圆应该相切;(3)码头与集镇的距离均为时,之间的直线航线最短.

【解析】

1)在中,利用余弦定理可求出的长度;

2)要使之间的直线航线最短,又使得航线不能经过浅水区,进而可得知直线与圆的位置关系;

3)设直线与圆相切于点,连接,设,根据的面积得到等式,然后利用余弦定理结合基本不等式求出的最小值,利用等号成立的条件求出,进而可得出结论.

1)在中,

根据余弦定理得,所以,故集镇间的直线距离为

2)要使之间的直线航线最短,又使得航线不能经过浅水区,则直线与圆应该相切;

3)设直线与圆相切于点,连接,则.

中,由

,即

由余弦定理,得

所以,解得

当且仅当时,取得最小值

所以码头与集镇的距离均为时,之间的直线航线最短,最短距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左焦点为,过点的直线交椭圆于两点,的最大值是的最小值是,且满足.

(1)求椭圆的离心率;

(2)设线段的中点为,线段的垂直平分线与轴、轴分别交于两点,是坐标原点,记的面积为的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax2+bx+cxx1时都取得极值,求ab的值与函数fx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求上的最小值;

(2)若关于的不等式有且只有三个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线l过点.

1)若直线l的纵截距和横截距相等,求直线l的方程;

2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的直径,点B上与AC不重合的动点,平面.

1)当点B在什么位置时,平面平面,并证明之;

2)请判断,当点B上运动时,会不会使得,若存在这样的点B,请确定点B的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①若直线与曲线有且只有一个公共点,则直线一定是曲线的切线;

②若直线与曲线相切于点,且直线与曲线除点外再没有其他的公共点,则在点附近,直线不可能穿过曲线

③若不存在,则曲线在点处就没有切线;

④若曲线在点处有切线,则必存在.

则以上论断正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

同步练习册答案