精英家教网 > 高中数学 > 题目详情
19.己知集合M={x|x>1},集合N={x|x2-2x<0},则M∩N等于(  )
A.{x|1<x<2}B.{x|0<x<l}C.{x|0<x<2}D.{x|x>2}

分析 求出N中不等式的解集确定出N,找出M与N的交集即可.

解答 解:由N中不等式变形得:x(x-2)<0,
解得:0<x<2,即N={x|0<x<2},
∵M={x|x>1},
∴M∩N={x|1<x<2},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(sin$\frac{x}{2}$)=1+cosx,求f(cosx).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中是奇函数的有(  )
A.y=-|sinx|B.y=sin|-x|C.y=sin|x|D.y=xsin|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,给出以下四个论断:
①$\frac{tanA}{tanB}$=1; ②1<sinA+sinB≤$\sqrt{3}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C
其中正确的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=logax,g(x)=f(x)[f(x)+f(2)-1],g(x)在[$\frac{1}{2}$,2]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-2y+3≥0}\\{x-3y+3≤0}\\{y-1≤0}\end{array}\right.$,若目标函数z=y-ax仅在点(-3,0)处取到最大值,则实数a的取值范围为(  )
A.(3,5)B.($\frac{1}{2}$,+∞)C.(-1,2)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等差数列{an}的公差d≠0,且a1,a3,a9构成等比数列{bn}的前3项,则$\frac{{{a_1}+{a_3}+{a_9}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{13}{16}$;又若d=2,则数列{bn}的前n项的和Sn=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a2=3,则a∈R,若a2=-1,则a∉R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆x2+y2-6x+2y=0关于原点对称的方程是(  )
A.x2+y2-6x-2y=0B.x2+y2+6x+2y=0C.x2+y2+6x-2y=0D.x2+y2+2x-6y=0

查看答案和解析>>

同步练习册答案