精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{2a-x-\frac{4}{x}-3,x∈(-∞,a)}\\{x-\frac{4}{x}-3,x∈[a,+∞)}\end{array}\right.$有且只有3个不同的零点x1,x2,x3(x1<x2<x3),且2x2=x1+x3,则a=-$\frac{11}{6}$.

分析 解出f(x)在[a,+∞)上的零点,对f(x)在各段上零点个数进行讨论,得出a的值.

解答 解:f(x)=$\left\{\begin{array}{l}{2a-x-\frac{4}{x}-3,x∈(-∞,a)}\\{x-\frac{4}{x}-3,x∈[a,+∞)}\end{array}\right.$,
令x-$\frac{4}{x}$-3=0,解得x=-1或x=4.
(1)若a≤-1,则x2=-1,x3=4,
∵2x2=x1+x3,∴x1=-6,
∴x1=-6是方程-x-$\frac{4}{x}$+2a-3=0的解,
∴6+$\frac{2}{3}$+2a-3=0,解得a=-$\frac{11}{6}$.
(2)若-1<a≤4,则x3=4,∴x2=$\frac{{x}_{1}+4}{2}$,且x1,x2为方程-x-$\frac{4}{x}$+2a-3=0的解,
即x1,x2为x2+(3-2a)x+4=0,
∴x1+x2=2a-3,x1x2=4,
解得x1=-2-2$\sqrt{3}$,x2=1-$\sqrt{3}$或x1=-2+2$\sqrt{3}$,x2=1+$\sqrt{3}$.
若x1=-2-2$\sqrt{3}$,x2=1-$\sqrt{3}$,则a=$\frac{{x}_{1}+{x}_{2}+3}{2}$=$\frac{-1-3\sqrt{3}}{2}$,与a>-1矛盾,
若x1=-2+2$\sqrt{3}$,x2=1+$\sqrt{3}$,则a=$\frac{{x}_{1}+{x}_{2}+3}{2}$=$\frac{-1+3\sqrt{3}}{2}$,与x2<a矛盾.
(3)若a>4,则f(x)在[a,+∞)上无零点,而f(x)=0在(-∞,a)上最多只有两解,与f(x)有三个零点矛盾.
综上,a=-$\frac{11}{6}$.
故答案为:-$\frac{11}{6}$

点评 本题考查了分段函数的零点计算,一元二次方程的解法,分类讨论思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的通项公式an=n2-2n-8(n∈N*),则a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象不与x轴、y轴相交,且关于原点对称,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$则x2+(y+2)2的取值范围是(  )
A.[$\frac{65}{9}$,25]B.[$\frac{36}{5}$,25]C.[16,25]D.[9,25]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知幂函数f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xsinx+cosx
(I)若f(x)>k对任意的x∈(0,π)恒成立,求实数k的取值范围;
(II)判断f(x)在区间(2,3)上的零点个数,并证明你的结论.(参考数据:$\sqrt{2}$≈1.4,$\sqrt{6}$≈2.4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设g(x)为定义在R上的奇函数,且g(x)不恒为0,若$f(x)=(\frac{1}{{{a^x}-1}}-\frac{1}{b})g(x)$(a>0且a≠1)为偶函数,则常数b=(  )
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三边a,b,c的倒数成等差数列,试分别用综合法和分析法证明:B为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知等边△ABC中,E,F分别为AB,AC边的中点,M为EF的中点,N为BC边上一点,且CN=$\frac{1}{4}$BC,将△AEF沿EF折到△A'EF的位置,使平面A'EF⊥平面EFCB.
(Ⅰ)求证:平面A'MN⊥平面A'BF;
(Ⅱ)设BF∩MN=G,求三棱锥A'-BGN的体积.

查看答案和解析>>

同步练习册答案