精英家教网 > 高中数学 > 题目详情

如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).M(x0,y0)在抛物线C2,MC1的切线,切点为A,B(M为原点O,A,B重合于O).x0=1-,切线MA的斜率为-.

(1)p的值;

(2)MC2上运动时,求线段AB中点N的轨迹方程(A,B重合于O,中点为O).

 

【答案】

(1)2 (2) x2=y

【解析】

:(1)因为抛物线C1:x2=4y上任意一点(x,y)的切线斜率为y=,且切线MA的斜率为-,

所以A点坐标为.

故切线MA的方程为y=-(x+1)+ .

因为点M(1-y0)在切线MA及抛物线C2,于是

y0=-(2-)+=-,

y0=-=-.

由①②得p=2.

(2)N(x,y),A,B,

x1x2,N为线段AB中点知

x=,

y=.

切线MA,MB的方程为

y=(x-x1)+ ,

y=(x-x2)+ .

由⑤⑥得MA,MB的交点M(x0,y0)的坐标为

x0=,y0=.

因为点M(x0,y0)C2,

=-4y0,

所以x1x2=-.

由③④⑦得

x2=y,x0.

x1=x2,A,B重合于原点O,AB中点NO,坐标满足x2=y.

因此AB中点N的轨迹方程为x2=y.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示的曲线C是由部分抛物线C 1:y=x2-1(|x|≥1)和曲线C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直线l与曲线C1相切于点M,与曲线C2相切于点N,记点M的横坐标为t(t>1),其中A(-1,0),B(1,0).
(1)当t=
2
时,求m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD的三边AB、BC、CD由长6分米的材料弯折而成,BC边的长为2t分米(1≤t≤
3
2
);曲线AOD拟从以下两种曲线中选择一种:曲线C1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y=cosx-1),此时记门的最高点O到BC边的距离为h1(t);曲线C2是一段抛物线,其焦点到准线的距离为
9
8
,此时记门的最高点O到BC边的距离为h2(t).
(1)试分别求出函数h1(t)、h2(t)的表达式;
(2)要使得点O到BC边的距离最大,应选用哪一种曲线?此时,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知抛物线C1x2=y,圆M:x2+(y-4)2=1,点P是抛物线C1上一点(异于原点),过点P作圆M的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设抛物线C1:y2=4mx(m>0)的焦点为F2,且其准线与x轴交于F1,以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)是否存在实数m,使得△PF1F2的三条边的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案