精英家教网 > 高中数学 > 题目详情
10.已知直线y=$\frac{1}{2}$x+m经过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左焦点F,交y轴于点P,c为双曲线的半焦距,O为坐标原点,若|OP|,2a,|OF|成等比数列,求此双曲线的离心率和渐近线方程.

分析 先求出P的坐标,再利用|OP|,2a,|OF|成等比数列,得到a,c的关系,即可求此双曲线的离心率和渐近线方程.

解答 解:由y=$\frac{1}{2}$x+m,令x=0,可得y=m,
∵直线y=$\frac{1}{2}$x+m经过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左焦点F,
∴0=-$\frac{c}{2}$+m,
∴m=$\frac{c}{2}$,
∴|OP|=$\frac{c}{2}$,
∵|OP|,2a,|OF|成等比数列,
∴4a2=$\frac{c}{2}•c$,
∴c2=8a2
∴e=$\frac{c}{a}$=2$\sqrt{2}$,b2=7a2
∴$\frac{b}{a}$=$\sqrt{7}$,渐近线方程为y=±$\sqrt{7}$x.

点评 本题考查双曲线的方程与性质,考查等比数列的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若a,b∈R,比较a2+2b2 与b(a+b)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面ABC⊥平面BCD,AB=BC=BD=2,∠ABC=∠DBC=$\frac{π}{3}$,E为棱AD的中点.
(1)证明:AD⊥BC;
(2)求四面体A-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△PAB是直角三角形,以斜边AB为一边作正方形ABCD,将正方形ABCD沿AB折起,使AD⊥PA,设PD的中点为E.在PD上存在一点G使ACG⊥平面PAD?如果存在,试确定点G的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在棱长为40m的正方体AG1H1D-GA1D1H中,E、E1、F1、F分别是AG、G1A1、H1D1、DH的中点,B、B1是EE1上的点,C、C1是FF1上的点,且EB=E1B1=FC=F1C1=10m,求证:平面ABCD∥平面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b∈R,求证:$\frac{{6}^{a}}{3{6}^{a+1}+1}$≤$\frac{5}{6}$-b+$\frac{{b}^{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{z-1}{z+1}$为纯虚数,且(z+1)($\overline{z}$+1)=|z|2,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=|x-2|-|x+1|的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2.求证:{an+1-2an}为等比数列.

查看答案和解析>>

同步练习册答案