精英家教网 > 高中数学 > 题目详情

【题目】如图,两个正方形ABCDADEF所在平面互相垂直,设MN分别是BDAE的中点,那么CDEMN,CE异面其中正确结论的序号是______

【答案】

【解析】

AD的中点G,连接MGNG,结合正方形的性质,我们结合线面垂直的判定定理及性质可判断的真假;连接ACCE,根据三角形中位线定理,及线面平行的判定定理,可以判断的真假,进而得到答案.

两个正方形ABCDADEF所在平面互相垂直,设MN分别是BDAE的中点,

AD的中点G,连接MGNG易得平面MNG,进而得到,故正确;

连接ACCE,根据三角形中位线定理,可得,由线面平行的判定定理,可得CDECE正确,MNCE异面错误;

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》由如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则( )

A. 6 B. 5 C. 4 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为X(单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,如图是此次调查中某一项的程序框图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是( )

A. 0.20B. 0.80C. 0.60D. 0.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(
A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数.

(Ⅰ)求的最小值;

(Ⅱ)若不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且 . (Ⅰ)求点N的轨迹C的方程;
(Ⅱ)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则kAD+kAE是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中, S2=16,且成等比数列.

(1)求数列{an}的通项公式;

(2)求数列{|an|}的前n项和Tn.

查看答案和解析>>

同步练习册答案