精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosx,2cosx),向量
b
=(2cosx,sin(π-x)),若f(x)=
a
b
+1.
(I)求函数f(x)的解析式和最小正周期;
(II)若x∈[0,
π
2
]
,求f(x)的最大值和最小值.
分析:(I)先根据向量的数量积运算表示出函数f(x)的解析式,然后根据二倍角公式和两角和与差的公式进行化简为y=Asin(wx+ρ)+b的形式,再由T=
w
可确定最小正周期.
(II)先根据x的范围求出2x+
π
4
的范围,再由正弦函数的性质可求其最值,进而可得到答案.
解答:解:(I)∵
a
=(cosx,2cosx)
b
=(2cosx,sin(π-x))

∴f(x)=
a
b
+1=2cos2x+2cosxsin(π-x)+1
=1+cos2x+2sinxcosx+1
=cos2x+sin2x+2
=
2
sin(2x+
π
4
)+2

∴函数f(x)的最小正周期T=
2

(II)∵x∈[0,
π
2
]

2x+
π
4
∈[
π
4
4
]

∴当2x+
π
4
=
π
2
,即x=
π
8
时,f(x)有最大值2+
2

2x+
π
4
=
4
,即x=
π
2
时,f(x)有最小值1.
点评:本题主要考查向量的数量积运算、两角和与差的正弦公式的应用和正弦函数的最值.三角函数与向量的综合题是高考的热点问题,一定要重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求证:
a
b

(2)若存在不等于0的实数k和t,使
x
=
a
+(t2+3)
b
y
=(-k
a
+t
b
),满足
x
y
,试求此时
k+t2
t
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),则|
a
+
b
|最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),则|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步练习册答案