精英家教网 > 高中数学 > 题目详情

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

①从中任取3球,恰有一个白球的概率是

②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为

④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.

其中所有正确结论的序号是________

【答案】①②④.

【解析】

根据古典概型概率公式结合组合知识可得结论;②根据二项分布的方差公式可得结果

根据条件概率进行计算可得到第二次再次取到红球的概率;④根据对立事件的概率公式可得结果.

①从中任取3个球,恰有一个白球的概率是,故①正确;

从中有放回的取球次,每次任取一球,

取到红球次数其方差为故②正确;

从中不放回的取球每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为故③错误;

从中有放回的取球3次每次任取一球,每次取到红球的概率为

至少有一次取到红球的概率为,故④正确,故答案为①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是 (φ为参数)和 (φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查高一新生中女生的体重情况,校卫生室随机选20名女生作为样本,测量她们的体重(单位:kg),获得的所有数据按照区间 进行分组,得到频率分布直方图如图所示,已知样本中体重在区间上的女生数与体重在区间上的女生数之比为.

(1)求的值;

(2)从样本中体重在区间上的女生中随机抽取两人,求体重在区间上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=16,F(﹣1,0),M是圆C上的一个动点,线段MF的垂直平分线与线段MC相交于点P.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)记点P的轨迹为C1 , A、B是直线x=﹣2上的两点,满足AF⊥BF,曲线C1与过A,B的两条切线(异于x=﹣2)交于点Q,求四边形AQBF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξη,已知甲、乙两名射手在每次射击中射中的环数大于6且甲射中10,9,8,7环的概率分别为0.5,3aa,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.

(1)ξη的分布列;

(2)ξη的数学期望与方差并以此比较甲、乙的射击技术.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换 得到曲线C′,设曲线C′上任一点为M(x,y),求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:

一次购物款(单位:元)

顾客人数

统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.

(Ⅰ)试确定 的值,并估计每日应准备纪念品的数量;

(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{m,n}= ,设F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,则F(x,y)的最小值是

查看答案和解析>>

同步练习册答案