精英家教网 > 高中数学 > 题目详情
11.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1;   
(Ⅱ)求三棱锥V${\;}_{C-{B}_{1}FE}$的体积.

分析 (Ⅰ)欲证EF∥平面ABC1D1,只需在平面ABC1D1中找一直线与EF平行,根据E、F分别为DD1、DB的中点,可得EF∥BD1,最后根据线面平行的判定定理可得结论;
(Ⅱ)由题意,可先证明出CF⊥平面BDD1B1,由此得出三棱锥的高,再求出底面△B1EF的面积,然后再由棱锥的体积公式即可求得体积.

解答 (Ⅰ)证明:连接BD1
∵E、F分别为DD1、DB的中点,
∴EF是三角形BD1D的中位线,即EF∥BD1;…(3分)
又EF?平面ABC1D1,BD1?平面ABC1D1,…(5分)
所以EF∥平面ABC1D1
(Ⅱ)解:∵EF⊥平面B1FC,∴EF⊥FB1
EF=$\sqrt{3}$,FB1=$\sqrt{6}$
Rt△B1EF的面积=$\frac{1}{2}$×EF×FB1=$\frac{1}{2}$×$\sqrt{3}$×$\sqrt{6}$=$\frac{3}{2}\sqrt{2}$
∵CB=CD,BF=DF,∴CF⊥BD.
∵DD1⊥平面ABCD,∴DD1⊥CF
又DD1∩BD=D,∴CF⊥平面BDD1B1   
又CF=$\sqrt{2}$,
∴VB1-EFC=${V_{C-{B_1}EF}}=\frac{1}{3}•{S_{△{B_1}EF}}•CF=\frac{1}{3}•\frac{{3\sqrt{2}}}{2}•\sqrt{2}$=1…(12分)

点评 本题主要考查了线面平行的判定定理、线面垂直的判定定理,考查三棱锥的体积,同时考查了推理论证的能力和空间想象能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若x,y满足|x|+|y|≤1,则z=$\frac{y}{x-3}$的取值范围是$[{-\frac{1}{3},\;\;\frac{1}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果一个复数与它的模的和为5+$\sqrt{3}$i,那么这个复数是(  )
A.$\frac{11}{5}$B.$\sqrt{3}$C.$\frac{11}{5}$+$\sqrt{3}$iD.$\frac{11}{5}$+2$\sqrt{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x2-2lnx若关于x的不等式f(x)-m≥0在[1,e]有实数解,则实数m的取值范围为(-∞,e2-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=(-3,4)$,以下存在唯一实数对λ,μ使$\overrightarrow a=λ\overrightarrow{e_1}+μ\overrightarrow{e_2}$成立的一组向量$\overrightarrow{e_1},\overrightarrow{e_2}$是(  )
A.$\overrightarrow{e_1}=(-1,2),\overrightarrow{e_2}=(3,-1)$B.$\overrightarrow{e_1}=(1,3),\overrightarrow{e_2}=(2,6)$
C.$\overrightarrow{e_1}=(0,0),\overrightarrow{e_2}=(-1,2)$D.$\overrightarrow{e_1}=(1,1),\overrightarrow{e_2}=(3,3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把病人送到医院看病的过程用框图表示,则此框图称为(  )
A.工序流程图B.程序流程图C.组织流程图D.程序步骤图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=2,an+1=3an+2(n∈N*
(1)求证:数列{an+1}是等比数列;
(2)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图在三棱柱ABC-A1B1C1中,侧面AA1C1C是矩形,且侧面AA1C1C⊥底面AA1B1B,M是AB的中点,若AA1=2,AC=1,∠A1AB=60°,CB1⊥A1B.
(1)求证:AC1∥平面CMB1
(2)求三棱锥M-CC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设公差不为0的等差数列{an}首项a1=9,且a4是a1与a8的等比中项,则公差d=(  )
A.$\frac{1}{9}$B.1C.6D.9

查看答案和解析>>

同步练习册答案