精英家教网 > 高中数学 > 题目详情
2.函数f(x)=2x-log${\;}_{\frac{1}{2}}$(x-1),x∈(1,3]的值域是(-∞,7].

分析 利用函数的特点判断出f(x)在∈(1,3]单调递增,即可得出值域.

解答 解:∵函数f(x)=2x-log${\;}_{\frac{1}{2}}$(x-1),
∴根据解析式得出:f(x)在∈(1,3]单调递增,
∴f(x)的最大值为:f(3)=6-log${\;}_{\frac{1}{2}}$2=7,
x→1时,f(x)→-∞
故答案为:(-∞,7],

点评 本题考查了函数的单调性,值域的求解问题,关键利用解析式判断单调性即可,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知(1-ax)4的展开式中x的系数为4,则a等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设R为实数集,集合S={x|log2x>0},T={x|x2>4},则S∩(∁RT)=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
超过1500元至4500元的部分10
超过4500元至9000元的部分20
(1)若某人一月份应缴纳此项税款为280元,那么他当月的工资、薪金所得是多少?
(2)假设某人一个月的工资、薪金所得是x元(0<x≤10000),试将其当月应缴纳此项税款y元表示成关于x的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x2+3x+4的定义域为[-2,2],则f(x)的值域为[-6,$\frac{25}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列前n项和为Sn,若S2=4,S4=16,则S6=(  )
A.52B.64C.-64D.-52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,π<φ<$\frac{3π}{2}$)的部分图象如图所示.
(1)求函数f(x)的表达式;   
(2)求函数f(x)在[$\frac{3π}{2}$,2π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设全集U是实数集R,M={x|x2>4},N={x|$\frac{2}{x-1}$≥1},则图中阴影部分所表示集合是{x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为(0,+∞),值域为R,对任意正数x,y,都有f(xy)=f(x)+f(y),当x>1时f(x)<0且f(3)=-1.
(1)求f(1)、f(9)、f($\frac{1}{9}$)的值.
(2)若不等式f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

同步练习册答案