精英家教网 > 高中数学 > 题目详情
12.在棱长为1的正方体ABCD-A1B1C1D1中,点P是它的体对角线BD1上一动点,则|AP|+|PC|的最小值是$\frac{2\sqrt{6}}{3}$.

分析 把平面BCD1与平面ABD1沿着BD1展平到一个平面上,连接AC与BD1的交点就是要求的点P的位置,从而求得|AP|+|PC|的最小值.

解答 解:将平面BCD1与平面ABD1沿着BD1展平到一个平面.然后连接AC与BD1的交点就是要求的点P的位置.
此时|AP|+|PC|的最小值就是展开后的线段AC的长度,所以所求的值为AC=2×$\frac{1×\sqrt{2}}{\sqrt{3}}$=$\frac{2\sqrt{6}}{3}$,
故答案为:$\frac{2\sqrt{6}}{3}$.

点评 本题主要考查直线和平面间的位置关系,把平面BCD1与平面ABD1沿着BD1展平到一个平面上,连接AC与BD1的交点就是要求的点P的位置,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x,且f(a)=3,函数g(x)=2ax-$\frac{3}{2}$•9x
(1)求常数a的值,并求g(x)的解析式;
(2)当x∈[-2,1]时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心在y轴上,半径为5且过点A(3,-4)的圆的方程为x2+y2=25或x2+(y+8)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=$\frac{2x-1}{x-1}$,若x<0,则y的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.
(1)证明:AD⊥平面DBC;
(2)求三棱锥D-ABC的体积;
(3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知PBD是⊙O的割线,PA、PC是⊙O的切线,A、C为切点,求证:
(1)PA•AB=PB•AD;
(2)$\frac{A{D}^{2}}{A{B}^{2}}$=$\frac{PD}{PB}$;
(3)AD•BC=AB•DC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知0<x<y<3,求$\frac{1}{x}+\frac{1}{y-x}+\frac{1}{3-y}$的最小值
(2)若0<x<y<a,不等式$\frac{1}{x^2}+\frac{1}{{{{(y-x)}^2}}}+\frac{1}{{{{(a-y)}^2}}}$≥9恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,⊙O的半径OC垂直于直径AB,M为OB上一点,CM的延长线交⊙O于N,过N点的切线交AB的延长线于P.
(1)求证:PM2=PB•PA;
(2)若⊙O的半径为3,OB=$\sqrt{3}$OM,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)求过点($\sqrt{3},2\sqrt{2}$)且与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有相同渐近线的双曲线的标准方程.
(Ⅱ) 如图所示,A、B是椭圆的两个顶点,C是AB的中点,F为椭圆的右焦点,OC的延长线交椭圆于点M,且|OF|=$\sqrt{2}$,若MF⊥OA,求此椭圆的标准方程.

查看答案和解析>>

同步练习册答案