精英家教网 > 高中数学 > 题目详情

【题目】已知不等式mx2+nx﹣ <0的解集为{x|x<﹣ 或x>2},则m﹣n=(
A.
B.﹣
C.
D.﹣

【答案】B
【解析】解:∵mx2+nx﹣ <0的解集为{x|x<﹣ 或x>2},
∴﹣ 和2是一元二次方程mx2+nx﹣ =0的两个根,且m<0,
∴﹣ +2=﹣ ,﹣ ×2=﹣
∴m=﹣1,n=
∴m﹣n=﹣1﹣ =﹣
故选:B.
【考点精析】关于本题考查的解一元二次不等式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017徐州考前信息卷20】已知函数,且的最小值为

(1)求的值;

(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;

(3)设曲线与曲线交于点,且两曲线在点处的切线分别为试判断轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出S的值为(

A.14
B.20
C.30
D.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2012年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如图的频率分布直方图.
(1)某调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的众数和中位数的估计值.
(3)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017黑龙江双鸭山市四模如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上所有的点

A. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

B. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变

C. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

D. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,PA⊥底面ABCD,且PA=AB=AD=CD,AB∥CD,∠ADC=90°.
(1)在侧棱PC上是否存在一点Q,使BQ∥平面PAD?证明你的结论;
(2)求证:平面PBC⊥平面PCD;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校今年准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12,则报考飞行员的总人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值b,则下面的四个值中不为定值的是(

A.点P到平面QEF的距离
B.三棱锥P﹣QEF的体积
C.直线PQ与平面PEF所成的角
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

同步练习册答案