精英家教网 > 高中数学 > 题目详情
20.已知$\overrightarrow{a}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{b}$=(cosωx,cosωx)(ω>0),记函数f(x)=$\vec a$•$\vec b$,且f(x)的最小正周期是π,则ω=(  )
A.ω=1B.ω=2C.ω=$\frac{1}{2}$D.ω=$\frac{2}{3}$

分析 根据向量的基本运算把两向量的坐标代入,利用二倍角公式和两角和公式化简整理,
再利用正弦函数的性质求得ω的值.

解答 解:$\overrightarrow{a}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{b}$=(cosωx,cosωx)(ω>0),
∴函数f(x)=$\vec a$•$\vec b$=$\sqrt{3}$sinωxcosωx+cos2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$cos2ωx+$\frac{1}{2}$
=sin(2ωx+$\frac{π}{6}$)+$\frac{1}{2}$
依题意可知T=$\frac{2π}{2ω}$=π,求得ω=1.
故选:A.

点评 本题主要考查了三角函数的周期性及其求法,向量的基本运算以及二倍角公式和两角和公式的应用问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.边长为1的菱形ABCD中,∠DAB=60°,$\overrightarrow{CM}=\overrightarrow{MD}$,$\overrightarrow{ND}=2\overrightarrow{BN}$,则$\overrightarrow{AM•}\overrightarrow{AN}$=$\frac{13}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和为Sn,且a1=1,2Sn=an•an+1(n∈N*).若bn=(-1)n$\frac{2n+1}{{a}_{n}•{a}_{n+1}}$,则数列{bn}的前n项和Tn=-1+$\frac{(-1)^{n}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1、F2是双曲线x2-4y2=4的两个焦点,P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)定义在区间(-3,7)上,其导函数如图所示,则函数y=f(x)在区间(-3,7)上极小值的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow n$与向量$\overrightarrow m$的夹角为$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow q=(1,0)$,且$|{\overrightarrow q+\overrightarrow n}|=|{\overrightarrow q-\overrightarrow n}|$,向量$\overrightarrow p=(cosA\;,\;2{cos^2}\frac{C}{2})$,其中A,B,C为△ABC的内角且有A+C=2B,求$|{\overrightarrow n+\overrightarrow p}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=(  )
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(cosx)=sin3x,则f(sin20°)的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R2分别如表:
R20.980.780.500.85
建立的回归模型拟合效果最差的同学是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案