精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,已知是椭圆上不同的三点,在第三象限,线段的中点在直线上.

(1)求椭圆的标准方程;

(2)求点C的坐标;

(3)设动点在椭圆上(异于点)且直线PB,PC分别交直线OA于两点,证明为定值并求出该定值.

 

(1);(2);(3)

【解析】

试题分析:(1)已知椭圆过两点,可把两点坐标代入方程列出关于的方程组,然后把分别作为整体,方程组就变为二元一次方程组,从而可很快解得;(2)关键是线段的中点在直线上,可设,由线段中点为,而直线的方程可求得,代入可得的一个方程,点坐标代入椭圆方程又得另一方程,联立可解得点坐标;(3)这类问题我们采取设而不求的方法,设在直线上,则,同理

,下面我们想办法把表示出来,这可由共线,共线得到,这里要考查同学计算能力,只要计算正确,就能得出正确结论.

试题解析:(1)由已知,得解得 2分

所以椭圆的标准方程为. 3分

(2)设点,则中点为

由已知,求得直线的方程为,从而.①

又∵点在椭圆上,∴.②

由①②,解得(舍),,从而. 5分

所以点的坐标为. 6分

(3)设

三点共线,∴,整理,得. 8分

三点共线,∴,整理,得. 10分

∵点在椭圆上,∴

从而. 14分

所以. 15分

为定值,定值为. 16分

考点:(1)椭圆的标准方程;(2)中点问题;(3)定值问题.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江西省上饶市高三第二次模拟考试文科数学试卷(解析版) 题型:解答题

已知

(1)当时,求的极值;

(2)当时,讨论的单调性;

(3)若对任意的,恒有成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省高三百校联合调研测试(一)数学试卷(解析版) 题型:填空题

已知集合,,则

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省连云港市高三3月第二次调研考试理科数学试卷(解析版) 题型:填空题

设等差数列的前项和为,若,则正整数= .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省连云港市高三3月第二次调研考试理科数学试卷(解析版) 题型:填空题

已知双曲线的离心率为,则实数m的值为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省连云港市高三3月第二次调研考试文科数学试卷(解析版) 题型:填空题

已知函数,若函数恰有两个不同的零点,则实数的取值范围为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省连云港市高三3月第二次调研考试文科数学试卷(解析版) 题型:填空题

设函数,若,则的值为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省苏锡常镇四市高三教学情况调研二数学试卷(解析版) 题型:填空题

在平面直角坐标系xOy中,已知双曲线的一个焦点为(5,0),则实数m = .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省苏、锡、常、镇四市高三教学情况调查(一)文科数学试卷(解析版) 题型:填空题

从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 .

 

查看答案和解析>>

同步练习册答案