已知点与点在直线的两侧,则下列说法: ① ; ② 时,有最小值,无最大值;
③ 恒成立;
④ 当,, 则的取值范围为(-;
其中正确的命题是 (填上正确命题的序号).
科目:高中数学 来源: 题型:
1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
AD |
EB |
查看答案和解析>>
科目:高中数学 来源: 题型:
(满分14分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2012年高考全国卷理科21)(本小题满分12分)(注意:在试卷上作答无效)
已知抛物线与圆 有一个公共点,且在处两曲线的切线为同一直线。
(1)求;
(2)设、是异于且与及都相切的两条直线,、的交点为,求到的距离。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com