精英家教网 > 高中数学 > 题目详情
18.某人从银行贷款100万元,以后每年还款13.5万元,10年还清,问银行贷款的年利率是多少?

分析 设出每年应还款的数额,分别求出该人10年还款的现金与利息和以及银行贷款100万元10年后的本利和,列等式后求得银行贷款的年利率.

解答 解:每年还13.5万元,还款10次,
则该人10年还款的现金与利息和为13.5[1+(1+r)+(1+r)2+…+(1+r)9],
银行贷款100万元10年后的本利和为100(1+r)10
∴13.5[1+(1+r)+(1+r)2+…+(1+r)9]=100(1+r)10
∴13.5×$\frac{1-(1+r)^{10}}{1-(1+r)}$=100(1+r)10
∴r=5.87%.

点评 本题考查了函数模型的选择及应用,考查了简单的数学建模思想方法,关键是列出贷款和还款本息的等式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{\begin{array}{l}|lgx|({0<x<10})\\-\frac{1}{2}x+6({x≥10})\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),则abc的取值范围是(10,12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P为椭圆x2+2y2=98上一个动点,A(0,5),求|PA|的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明:cos(cosx)>sin(sinx)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数y=lg$\frac{x}{100}$的图象给出三个命题:下述命题中正确命题的序号是(1),(2),(3).
(1)存在直线l1,函数y=lg$\frac{x}{100}$的图象与函数y=100•10x的图象关于直线l1对称;
(2)存在直线l2,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1$\frac{x}{100}$的图象关于直线l2对称;
(3)存在直线l3,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1x的图象关于直线l3对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点A到右焦点F2的距离为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{6}}{3}$,过F2的直线l与椭圆C交于M,N两点.
(1)求椭圆的方程;
(2)探究:当△MF1N的内切圆的面积最大时,直线l的倾斜角是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=$\frac{4}{3}$,且有an+1=an2-an+1,n∈N*
(I)求证:数列{an}是递增数列;
(Ⅱ)记Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$,Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$求证:Sn+3Tn=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心在直线2x-7y+8=0上,且过点A(6,0),B(1,5),直线l的倾斜角为135°,解答下列问题
(1)若直线l的横截距为3,求直线l的方程;
(2)求圆C的一般方程;
(3)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

同步练习册答案