精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线,不与轴垂直的直线与双曲线右支交于点,(轴上方,轴下方),与双曲线渐近线交于点轴上方),为坐标原点,下列选项中正确的为(

A.恒成立

B.,则

C.面积的最小值为1

D.对每一个确定的,若,则的面积为定值

【答案】ABD

【解析】

对于A选项,设直线方程为,分别与双曲线方程以及双曲线的渐近线方程联立,求出中点坐标,并判断是否相等即可;对于B选项,由,得到,结合A选项的结果,即可判断选项B是否正确;对于C选项,设直线方程为,直线分别与渐近线方程联立,求出坐标,进而求出的面积,根据的范围,求出的面积的范围即可;对于D选项,由已知可得,利用选项A的方程,得到关系,求出的面积即可.

,代入,①

显然,即

,则是方程①的两个根,

,由

,得

所以,所以的中点重合,

所以,所以恒成立.故A正确.

因为的中点重合为,所以

,所以

所以,故B正确.

设直线方程为

,由

,故C错误.

因为,所以,得

,即

所以,又

所以是定值.故D正确.

故选:ABD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,且函数的图象是函数图象的一条切线,求实数的值;

2)若不等式对任意恒成立,求实数的取值范围;

3)若对任意实数,函数上总有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=0nN*),前n项和为Sn (参考数据: ln2≈0.693ln3≈1.099),则下列选项中错误的是(

A.是单调递增数列,是单调递减数列B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1700万元.则该研究所改建这十个实验室投入的总费用最多需要( )

A.3233万元B.4706万元C.4709万元D.4808万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,以为圆心过椭圆左顶点的圆与直线相切于,且满足

1)求椭圆的标准方程;

2)过椭圆右焦点的直线与椭圆交于不同的两点,问内切圆面积是否有最大值?若有,求出最大值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,真四棱柱的底面是菱形,EMN分别是BC的中点.

1)证明:

2)求平面DMN与平面所成锐角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司准备设计一个精美的心形巧克力盒子,它是由半圆、半圆和正方形ABCD组成的,且.设计人员想在心形盒子表面上设计一个矩形的标签EFGH,标签的其中两个顶点EFAM上,另外两个顶点GHCN上(MN分别是ABCB的中点).设EF的中点为P,矩形EFGH的面积为

1)写出S关于的函数关系式

2)当为何值时矩形EFGH的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国法定劳动年龄是周岁至退休年龄(退休年龄一般指男周岁,女干部身份周岁,女工人周岁).为更好了解我国劳动年龄人口变化情况,有关专家统计了年我国劳动年龄人口和周岁人口数量(含预测),得到下表:

其中年劳动年龄人口是亿人,则下列结论不正确的是(

A.年劳动年龄人口比年减少了万人以上

B.周岁人口数的平均数是亿

C.年,周岁人口数每年的减少率都小于同年劳动人口每年的减少率

D.年这周岁人口数的方差小于这年劳动人口数的方差

查看答案和解析>>

同步练习册答案