精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3x,x>0
2x+1,x≤0
,若f(a)+f(1)=0,则实数a的值为(  )
A、-3B、-2C、-1D、1
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(a)=-f(1)=-3,当a>0时,f(a)=3a;当a≤0时,f(a)=2a+1=-3.由此进行分类讨论,能求出a的值.
解答: 解:∵f(x)=
3x,x>0
2x+1,x≤0
,f(a)+f(1)=0,
∴f(a)=-f(1)=-3,
当a>0时,f(a)=3a=-3不成立,
当a≤0时,f(a)=2a+1=-3,解得a=-2.
故选:B.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线经过点A(a,4),B(2,-a),且斜率为4,则a的值为(  )
A、-6
B、-
14
5
C、
4
5
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+x-1<0,则¬p为(  )
A、?x∈R,x2+x-1>0
B、?x∈R,x2+x-1≥0
C、?x∉R,x2+x-1≥0
D、?x∉R,x2+x-1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2
5
b
=(1,2),且
a
b
,则
a
的坐标为(  )
A、(2,4)
B、(-2,-4)
C、(2,4)或(-2,-4)
D、(2,-4)或(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,并且α是第三象限角
(Ⅰ)求sinα和cosα的值.
(Ⅱ)求sin(α+
π
2
)•sin(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|x<3},N={x|log2x>1},则M∩N=(  )
A、R
B、{x|0<x<3}
C、{x|1<x<3}
D、{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(1,2),B(4,1),C(3,6).
(1)求∠A的平分线所在直线的方程;
(2)若直线kx-y-2k-1=0与△ABC的边AB,AC相交,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+my+1=0与不等式组
x+y-3≥0
2x-y≥0
x-2≤0
表示的平面区域有公共点,则实数m的取值范围是(  )
A、[
1
3
4
3
]
B、[-
4
3
,-
1
3
]
C、[
3
4
,3]
D、[-3,-
3
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos4x-sin4x+2
3
sinxcosx.
(1)把f(x)化成Asin(ωx+φ)的形式;
(2)求f(x)的最小正周期和值域.

查看答案和解析>>

同步练习册答案