精英家教网 > 高中数学 > 题目详情

(16分)已知(Ⅰ)证明:;(Ⅱ)若存在不同时为零的实数,使, 试求关系式

(Ⅲ)讨论关于的方程的解的情况.

解:

(Ⅰ)……3分

(Ⅱ)

  ……6分

(Ⅲ)………8分

时, 原方程有三个解

时, 原方程有一解      ……10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E.
(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;
(Ⅱ)已知m=
1
4
.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程;
(Ⅲ)已知m=
1
4
.设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
.
a
=(cos
π
4
x,1),
.
b
=(f(x),2sin
π
4
x,1),
.
a
.
b
,数列{an}满足:{a1=
1
2
,an+1=f(an),n∈N*}.
(1)用数学归纳法证明:0<an<an+1<1;
(2)已知an
1
2
,证明an+1-
π
4
an
4-π
4

(3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

21、证明题:如图:两直线a,b平行,直线c与a,b相交,则:直线a、b、c三线共面(要求写处已知、求证、证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≠0,证明关于x的方程ax=b有且只有一个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

同步练习册答案