精英家教网 > 高中数学 > 题目详情
平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(Ⅰ)设向量
d
=
8
a
+
8
b
,且|
d
|=
10
,求向量
d
的坐标;
(Ⅱ) 若(
a
+k
c
)∥(2
b
-
a
),求实数k的值.
考点:平面向量共线(平行)的坐标表示,平面向量的坐标运算
专题:平面向量及应用
分析:(Ⅰ)根据向量的坐标运算以及模长公式,求出λ的值即可;
(Ⅱ)根据向量平行的坐标表示,列出方程,即可求出k的值.
解答: 解:(Ⅰ)∵向量
a
=(3,2),
b
=(-1,2),
d
=
8
a
+
8
b
=(
15λ
8
10λ
8
)+(-
8
14λ
8
)=(λ,3λ);
又|
d
|=
10

λ2+2
=
10

解得λ=±1,
d
=(1,3)或
d
=(-1,-3);
(Ⅱ)∵
a
+k
c
=(3,2)+k(4,1)=(3+4k,2+k),
2
b
-
a
=2(-1,2)-(3,2)=(-5,2);
且(
a
+k
c
)∥(2
b
-
a
),
∴2×(3+4k)-(-5)×(2+k)=0,
解得k=-
16
13
点评:本题考查了平面向量的坐标运算问题,也考查了向量平行与求向量模长的问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x-a
(a∈R).若存在b∈[0,1],使f(f(b))=b成立,则a的取值范围是(  )
A、[0,
1
4
]
B、[1,2]
C、[0,1]
D、[
1
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
1
x

(Ⅰ)求证:f(x)是奇函数;
(Ⅱ)判断f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1

其中在区间[1,+∞)上通道宽度可以为1的函数有
 
(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数.
(1)y=(2x2+3)(3x-1);            
(2)f(x)=
cosx+sinx
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2},B={1},则“x∈A”是“x∈B”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A.B.C依次成等差数列,AB=8,BC=5,则△ABC内切圆的面积是(  )
A、
3
π
B、3π
C、6π
D、12π

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检验某种产品的质量,决定利用随机数表法从300件产品中抽取5件检查,300件产品编号为000,001,002,…,299,下图为随机数表的第7行和第8行,若选择随机数表第7行第5列作为起始数字,并向右读数,依次得到的5个样本号码中的第二个号码为
 

第7行 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
第8行63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
a2-7a+6
a+1
+(a2-5a-6)i(a∈R).
(1)求实数a为何值时,z为实数;
(2)求实数a为何值时,z为虚数;
(3)求实数a为何值时,z为纯虚数.

查看答案和解析>>

同步练习册答案