【题目】如图,在四棱锥P-ABCD中,平面ABCD,底面ABCD是等腰梯形,,.
(1)证明:平面PAC;
(2)若,,设,且,求四棱锥P-ABCD的体积.
【答案】(1)见解析(2)96
【解析】
(1)由平面ABCD,可知,又且,即可说明平面PAC;
(2)连接OP,由平面PAC可知,又,得,又由四边形ABCD为等腰梯形,,可知,均为等腰直角三角形,由直角三角形斜边上的中线等于斜边的一半可得梯形ABCD的高,即可求得梯形ABCD的面积S,再由勾股定理求得四棱锥P-ABCD的高PA,代入棱锥体积公式,即可求得答案.
(1)证明:因为平面ABCD,平面ABCD,所以.
又,,平面PAC,平面PAC,
所以平面PAC.
(2)如图,连接OP,
由(1)知,平面PAC,
又平面PAC,知.
在中,因为,得,
又因为四边形ABCD为等腰梯形,,
所以,均为等腰直角三角形.
从而梯形ABCD的高为,
于是梯形ABCD的面积.
在等腰直角三角形AOD中,,
所以,.
故四棱锥P-ABCD的体积为.
科目:高中数学 来源: 题型:
【题目】在等腰梯形ABCD中,已知AB=AD=CD=1,BC=2,将△ABD沿直线BD翻折成△A′BD,如图,则直线BA′与CD所成角的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为厦门市2018年国庆节7天假期的楼房认购量与成交量的折线图,请你根据折线图对这7天的认购量(单位:套)与成交量(单位:套),则下列选项中正确的是( )
A.日成交量的中位数是10
B.日成交量超过日平均成交量的有2天
C.认购量与日期正相关
D.10月7日认购量的增长率小于10月7日成交量的增长率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆C:()的左、右焦点分别为,,直线l:交椭圆C于A,B两点,且的周长为8.
(1)求椭圆C的方程;
(2)若线段的中点为P,直线与椭圆C交于M,N两点,且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面ABCD,底面ABCD是等腰梯形,,.
(1)证明:平面PAC;
(2)若,,设,且,求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆C:(>>0)的右焦点为F(1,0),且过点(1,),过点F且不与轴重合的直线与椭圆C交于A,B两点,点P在椭圆上,且满足.
(1)求椭圆C的标准方程;
(2)若,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法中所有正确的是( )
A.存在某个位置,使得
B.翻折过程中,的长是定值
C.若,则
D.若,当三棱锥的体积最大时,三棱锥的外接球的表面积是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com