【题目】已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1 , x2(x1<x2)( )
A.
B.
C.
D.
【答案】D
【解析】解:∵f′(x)=lnx+1﹣2ax,(x>0)
令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1 , x2函数g(x)=lnx+1﹣2ax有且只有两个零点g′(x)在(0,+∞)上的唯一的极值不等于0.
.
①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.
②当a>0时,令g′(x)=0,解得x= ,
∵x ,g′(x)>0,函数g(x)单调递增; 时,g′(x)<0,函数g(x)单调递减.
∴x= 是函数g(x)的极大值点,则 >0,即 >0,
∴ln(2a)<0,∴0<2a<1,即 .
故当0<a< 时,g(x)=0有两个根x1 , x2 , 且x1< <x2 , 又g(1)=1﹣2a>0,
∴x1<1< <x2 , 从而可知函数f(x)在区间(0,x1)上递减,在区间(x1 , x2)上递增,在区间(x2 , +∞)上递减.
∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣ .
故选:D.
【考点精析】本题主要考查了函数的极值和函数的极值与导数的相关知识点,需要掌握极值反映的是函数在某一点附近的大小情况;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】对于数列, , , ,若满足,则称数列为“数列”.
若存在一个正整数,若数列中存在连续的项和该数列中另一个连续的项恰好按次序对应相等,则称数列是“阶可重复数列”,
例如数列因为, , , 与, , , 按次序对应相等,所以数列是“阶可重复数列”.
(I)分别判断下列数列, , , , , , , , , .是否是“阶可重复数列”?如果是,请写出重复的这项;
(II)若项数为的数列一定是 “阶可重复数列”,则的最小值是多少?说明理由;
(III)假设数列不是“阶可重复数列”,若在其最后一项后再添加一项或,均可 使新数列是“阶可重复数列”,且,求数列的最后一项的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(x+a)﹣lnx,其中a为常数.
(1)当a=﹣1时,求f(x)的极值;
(2)若f(x)是区间 内的单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜爱运动是否和性别有关,我们随机抽取了50名对象进行了问卷调查得到了如下的2×2列联表:
喜爱运动 | 不喜爱运动 | 合计 | |
男性 | 5 | ||
女性 | 10 | ||
合计 | 50 |
若在全部50人中随机抽取2人,抽到喜爱运动和不喜爱运动的男性各一人的概率为 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜爱运动与性别有关?说明你的理由..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知面积为S的凸四边形中,四条边长分别记为a1 , a2 , a3 , a4 , 点P为四边形内任意一点,且点P到四边的距离分别记为h1 , h2 , h3 , h4 , 若 = = = =k,则h1+2h2+3h3+4h4= 类比以上性质,体积为y的三棱锥的每个面的面积分别记为Sl , S2 , S3 , S4 , 此三棱锥内任一点Q到每个面的距离分别为H1 , H2 , H3 , H4 , 若 = = = =K,则H1+2H2+3H3+4H4=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价﹣成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com