精英家教网 > 高中数学 > 题目详情

【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣ax+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2

【答案】A
【解析】解:由题意得,f(x)+g(x)=ax﹣ax+2,
令x=2得,f(2)+g(2)=a2﹣a2+2,①
令x=﹣2得,f(﹣2)+g(﹣2)=a2﹣a2+2,
因为在R上f(x)是奇函数,g(x)是偶函数,
所以f(﹣2)=﹣f(2),g(﹣2)=g(2),
则﹣f(2)+g(2)=a2﹣a2+2,②,
①+②得,g(2)=2,又g(2)=a,即a=2,
代入①得,f(2)=
故选A.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“a≥3 ”是“直线l:2ax﹣y+2a2=0(a>0)与双曲线C: =1的右支无交点”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 ,其左右焦点为 ,过点的直线交椭圆 两点,线段的中点为 的中垂线与轴和轴分别交于 两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命题正确的序号是
①如果函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值为127
②数列{an}满足首项a1=2,ak+12﹣ak2=2,k∈N* , 当n∈M且n最大时,数列{an}有2048个.
③数列{an}(n=1,2,3,…,8)满足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果数列{an}中的每一项都是集合M的元素,则符合这些条件的不同数列{an}一共有33个.
④已知直线amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 则一共可以得到不同的直线196条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对任意,都有,则称函数是“以为界的类斜率函数”.

(1)试判断函数是否为“以为界的类斜率函数”;

(2)若实数,且函数是“以为界的类斜率函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+ ]= 的实数a的个数为(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD= ,AB=AD,E为PC的中点.

(1)求证:BC⊥AB;
(2)求AB的长;
(3)求平面BDE与平面ABP所成二面角的正弦值.

查看答案和解析>>

同步练习册答案