£¨2013•Äþ²¨¶þÄ££©Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1 (a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
2
2
£¬P1¡¢P2ÊÇÍÖÔ²EµÄ³¤ÖáµÄÁ½¸ö¶Ëµã£¨P2λÓÚP1ÓҲࣩ£¬µãFÊÇÍÖÔ²EµÄÓÒ½¹µã£®µãQÊÇxÖáÉÏλÓÚP2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×ã
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2
£®
£¨¢ñ£© ÇóÍÖÔ²EµÄ·½³ÌÒÔ¼°µãQµÄ×ø±ê£»
£¨¢ò£© ¹ýµãQµÄ¶¯Ö±Ïßl½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬Á¬½áAF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãC£¬Á¬½áBF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãD£®
¢ÙÇóÖ¤£ºB¡¢C¹ØÓÚxÖá¶Ô³Æ£»
¢Úµ±ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö£º£¨¢ñ£©ÉèµãF£¨c£¬0£©£¬Q£¨x£¬0£©£¨x£¾a£©£¬ÓÉ
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2
£¬µÃx=
a2
c
£¬ÒÀÌâÒâ|FQ|=1£¬¼´
a2
c
-c=
b2
c
=1
£¬ÔÙÓÉÀëÐÄÂÊ
c
a
=
2
2
£¬ b2=a2-c2
£¬ÁªÁ¢¼´¿É½âµÃa£¬b£¬c£¬¼°µãQ×ø±ê£»
£¨¢ò£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪx=my+2£¬´úÈëÍÖÔ²EµÄ·½³Ì¿ÉµÃ£¨2+m2£©y2+4my+2=0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬µãB¹ØÓÚxÖáµÄ¶Ô³ÆµãB1£¨x2£¬-y2£©£¬Ö»ÐèÖ¤Ã÷B1¼´ÎªµãC£¬¿ÉÖ¤A¡¢F¡¢B1Èýµã¹²Ïߣ¬¸ù¾ÝбÂÊÏàµÈ¼°Î¤´ï¶¨Àí¼´¿ÉÖ¤Ã÷£»¢ÚÓÉ¢ÙµÃB¡¢C¹ØÓÚxÖá¶Ô³Æ£¬Í¬ÀíA¡¢D¹ØÓÚxÖá¶Ô³Æ£¬Ò×ÖªËıßÐÎABCDÊÇÒ»¸öµÈÑüÌÝÐΣ¬´Ó¶øËıßÐÎABCDµÄÃæ»ýS=|x1-x2|•£¨|y1|+|y2|£©=|m|•|y1-y2|•|y1+y2|£¬´úÈëΤ´ï¶¨Àí¿ÉµÃ¹ØÓÚmµÄº¯Êý£¬Í¨¹ý»»Ôª½èÖúµ¼Êý¿ÉÇóµÃSµÄ×î´óÖµ¼°ÏàÓ¦µÄmÖµ£¬´Ó¶ø¿ÉµÃÖ±Ïß·½³Ì£»
½â´ð£º½â£º£¨¢ñ£©ÉèµãF£¨c£¬0£©£¬Q£¨x£¬0£©£¨x£¾a£©£®

ÓÉ
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2
£¬
¿ÉµÃ
1
x+a
+
1
x-a
=
2
x-c
£¬½âµÃx=
a2
c
£®
ÒÀÌâÒâ|FQ|=1£¬¼´
a2
c
-c=
b2
c
=1
£®
ÓÖÒòΪ
c
a
=
2
2
£¬ b2=a2-c2
£¬ËùÒÔa=
2
£¬ b=c=1
£®
¹ÊÍÖÔ²µÄ·½³ÌÊÇ
x2
2
+y2=1
£¬µãQµÄ×ø±êÊÇ£¨2£¬0£©£®        
£¨¢ò£©¢ÙÉèÖ±ÏßlµÄ·½³ÌΪx=my+2£¬´úÈëÍÖÔ²EµÄ·½³Ì¿ÉµÃ£¨2+m2£©y2+4my+2=0£¬
ÒÀÌâÒ⣬¡÷=£¨4m£©2-8£¨2+m2£©=8£¨m2-2£©£¾0£¬m2£¾2£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=-
4m
2+m2
£¬y1y2=
2
2+m2
£®£¨*£©
µãB¹ØÓÚxÖáµÄ¶Ô³ÆµãB1£¨x2£¬-y2£©£¬
ÔòA¡¢F¡¢B1Èýµã¹²ÏߵȼÛÓÚ
y1
x1-1
=
-y2
x2-1
?
y1
my1+1
+
y2
my2+1
=0
?
2my1y2+y1+y2
(my1+1)(my2+1)
=0
£¬
ÓÉ£¨*£©¿ÉÖªÉÏÊö¹Øϵ³ÉÁ¢£®
Òò´Ë£¬µãC¼´ÊǵãB1£¬Õâ˵Ã÷B¡¢C¹ØÓÚxÖá¶Ô³Æ£®
¢ÚÓÉ¢ÙµÃB¡¢C¹ØÓÚxÖá¶Ô³Æ£¬Í¬Àí£¬A¡¢D¹ØÓÚxÖá¶Ô³Æ£®
ËùÒÔ£¬ËıßÐÎABCDÊÇÒ»¸öµÈÑüÌÝÐΣ¬
ÔòËıßÐÎABCDµÄÃæ»ýS=|x1-x2|•£¨|y1|+|y2|£©=|m|•|y1-y2|•|y1+y2|=
4m2
2+m2
(y1-y2)2
=8
2
m2
m2-2
(2+m2)2
£®
Éèt=
m2-2
  (t£¾0)
£¬Ôòm2=t2+2£¬S(t)=8
2
(t2+2)t
(t2+4)2
£®
Ç󵼿ɵÃS¡ä=-8
2
(t4-6t2-8)
(t2+4)3
£¬ÁîS'=0£¬¿ÉµÃt2=3+
17
£®
ÓÉÓÚS£¨t£©ÔÚ(0£¬
3+
17
)
Éϵ¥µ÷Ôö£¬ÔÚ(
3+
17
£¬+¡Þ)
Éϵ¥µ÷¼õ£®
ËùÒÔ£¬µ±t2=3+
17
¼´m2=5+
17
ʱ£¬ËıßÐÎABCDµÄÃæ»ýSÈ¡µÃ×î´óÖµ£®                     
´Ëʱ£¬Ö±ÏßlµÄ·½³ÌÊÇx=¡À
5+
17
y+2
£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ¡¢ÍÖÔ²·½³Ì¼°Ö±Ïߵķ½³Ì£¬¿¼²éÈýµã¹²Ïß¼°Ö±ÏßбÂÊ£¬¿¼²éѧÉú×ÛºÏÔËÓÃËùѧ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ËùÓÃ֪ʶµã·±¶à£¬¶ÔÄÜÁ¦ÒªÇó¸ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©É蹫±È´óÓÚÁãµÄµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒa1=1£¬S4=5S2£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬Âú×ãb1=1£¬Tn=n2bn£¬n¡ÊN*£®
£¨¢ñ£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨¢ò£©ÉèCn=£¨Sn+1£©£¨nbn-¦Ë£©£¬ÈôÊýÁÐ{Cn}Êǵ¥µ÷µÝ¼õÊýÁУ¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©É躯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬¶ÔÈÎÒâx¡ÊR¶¼ÓÐf¡ä£¨x£©£¾f£¨x£©³ÉÁ¢£¬Ôò£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=a£¨x-1£©2+lnx£®a¡ÊR£®
£¨¢ñ£©µ±a=-
1
4
ʱ£¬Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±x¡Ê[1£¬+¡Þ£©Ê±£¬º¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㶼ÔÚ²»µÈʽ×é
x¡Ý1
y¡Üx-1
Ëù±íʾµÄÇøÓòÄÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©ÈçͼÊÇijѧУ³éÈ¡µÄn¸öѧÉúÌåÖصÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÒÑ֪ͼÖдÓ×óµ½ÓÒµÄÇ°3¸öС×éµÄƵÂÊÖ®±ÈΪ1£º2£º3£¬µÚ3¸öС×éµÄƵÊýΪ18£¬ÔòµÄÖµnÊÇ
48
48
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©ÒÑÖªÁ½·ÇÁãÏòÁ¿
a
£¬
b
£¬Ôò¡°
a
b
=|
a
||
b
|¡±ÊÇ¡°
a
Óë
b
¹²Ïß¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸