【题目】若定义在R上的函数 满足 ,其导函数 满足 ,则下列结论中一定错误的是( )
A.
B.
C.
D.
【答案】C
【解析】由已知条件,构造函数=-Kx,则=-k,故函数在R上单调递增,且>0,故g()>g(0),所以,,所以结论中一定错误的是C,选项D无法判断;构造函数h(x)=f(x)-x,则h'(x)=f'(x)-1>0,所以函数h(x)在R上单调递增,且,所以h()>h(0),即f()->-1,选项A,B无法判断,故选C。
【考点精析】利用函数的定义域及其求法和基本求导法则对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要条件
C. 若p且q为假命题,则p、q均为假命题
D. 命题p:“x0∈R使得+x0+1<0”,则p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是( )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的双曲线C的右焦点为(2,0),实轴长为.
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若两直线的倾斜角分别为 与,则下列四个命题中正确的是( )
A. 若<,则两直线的斜率:k1 < k2 B. 若=,则两直线的斜率:k1= k2
C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆离心率是,焦点到相应准线的距离是3.
(1)求椭圆的方程;
(2)如图,设A是椭圆的左顶点,动圆过定点E(1,0)和F(7,0),且与直线x=4交于点P,Q.
①求证:AP,AQ斜率的积是定值;
②设AP,AQ分别与椭圆交于点M,N,求证:直线MN过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com