精英家教网 > 高中数学 > 题目详情
已知M与两定点O(0,0)、A(3,0)的距离之比为
1
2

(1)求M点的轨迹方程;
(2)若M的轨迹为曲线C,求C关于直线2x+y-4=0对称的曲线C′的方程.
考点:轨迹方程
专题:计算题,直线与圆
分析:(1)设M坐标为(x,y),由题意得
x2+y2
(x-3)2+y2
=
1
2
,整理得M点的轨迹方程;
(2)求出C关于直线2x+y-4=0对称的曲线C′的圆心坐标,即可求得结论.
解答: 解:(1)设M坐标为(x,y),由题意得
x2+y2
(x-3)2+y2
=
1
2
,整理得(x+1)2+y2=4.
所以M点的轨迹方程为(x+1)2+y2=4.
(2)因为曲线C:(x+1)2+y2=4,
所以C关于直线2x+y-4=0对称的曲线C′是与C半径相同的圆,故只需求C′的圆心坐标即可,设C′的圆心坐标(x0,y0).
由题意得
y0
x0+1
=
1
2
2•
x0-1
2
+
y0
2
-4=0
,解得
x0=3.8
y0=2.4

故曲线C′的方程为(x-3.8)2+(y-2.4)2=4.
点评:本题考查轨迹方程,考查圆的对称性,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元.
(Ⅰ)写出建造水池的总造价y元关于底的一边长x米的函数解析式y=f(x),并求定义域.
(Ⅱ)当底边长为多少米时总造价最低?最低总造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①23的立方根等于26的六次方根;
664
的运算结果是±2;
③根式
366-x
在实数范围内是没有意义的;
④根式
na
(n为正奇数)与根式
mam
(m为正整数)中,a的取值范围都是全体实数;
⑤不存在实数a,使得根式
a
+
4-a
在实数范围内有意义.
其中正确的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

计算或花间下列各式:
(1)2log510+log50.25
(2)(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
)(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2-1
(a>0).
(1)判断并证明函数f(x)的奇偶性;
(2)判断函数f(x)的单调性,并用函数的单调性定义给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设a,b,c∈(0,+∞),且a+b+c=1,求证
1
a
+
1
b
+
1
c
≥9.
(2)已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)f(x)=|x+1|+|x-1|
(2)f(x)=
2x2+2x
x+1

(3)f(x)=
1-x2
+
x2-1

(4)f(x)=
1-x2
2-|x+2|

(5)f(x)=(x-1)
1+x
1-x

(6)f(x)=
x+3
0
-x+3
x<-1
|x|≤1
x>1

查看答案和解析>>

科目:高中数学 来源: 题型:

备受瞩目的巴西世界杯正在如火如荼的进行,为确保总决赛的顺利进行,组委会决定在位于里约热内卢的马拉卡纳体育场外临时围建一个矩形观众候场区,总面积为72m2(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为2m的入口.现已知铁栏杆的租用费用为100元/m.设该矩形区域的长为x(单位:m),租用铁栏杆的总费用为y(单位:元)
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使得租用此区域所用铁栏杆所需费用最小,并求出最小最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算y=f(x)函数值的程序框图.   
(Ⅰ)请写出程序对应函数f(x)的表达式;
(Ⅱ)若输出的结果是正数,求输入的实数x的取值范围.

查看答案和解析>>

同步练习册答案