精英家教网 > 高中数学 > 题目详情

【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABCA1A=AB=AC=2,A1C1=1,.

(1)证明:BCA1D

(2)求二面角A-CC1-B的余弦值.

【答案】(1)详见解析;(2) .

【解析】试题分析: ()由线面垂直的性质定理可得,在中,根据长度比例可得,可推出,再由线面垂直的判定定理推出平面,根据定义得出结论成立;(2) 作点,连接由线面垂直得到线线垂直,找到二面角的平面角,点,在三角形中求出,再从中分别求出AE和BE,代入公式即可.

试题解析:(Ⅰ) 平面平面

.在中,

,又

,即

平面, 又A1D平面.

A1D.

(Ⅱ)如图,作点,连接

由已知得平面.∴AB┴CC1,又CC1AE=E,

∴CC1┴平面AEB, ∴CC1┴BE,

为二面角的平面角.

点,

中,

中,AB=, AE=, ∴BE=

即二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线 的极坐标方程是 ,圆 的极坐标方程是
(1)求 交点的极坐标;
(2)设 的圆心, 交点连线的中点,已知直线 的参数方程是 为参数),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,在 的展开式中,第二项系数是第三项系数的
(Ⅰ)展开式中二项系数最大项;
(Ⅱ)若 ,求① 的值;② 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为定义在 上的偶函数,当 时,有 ,且当 时, ,给出下列命题:
的值为
②函数 在定义域上为周期是2的周期函数;
③直线 与函数 的图像有1个交点;
④函数 的值域为 .
其中正确的命题序号有 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 为参数),以坐标原点为极点, x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l过点 .
(1)若直线l与曲线C交于A,B两点,求 的值;
(2)求曲线C的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中
(1)设函数 ,求函数 的单调区间;
(2)若存在 ,使得 成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABCA1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABCFF1分别是ACA1C1的中点.

求证:(1)平面AB1F1平面C1BF

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?

(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2,若摸到的是2个相同颜色的球,则为中奖.

试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

同步练习册答案