精英家教网 > 高中数学 > 题目详情
19.设等比数列{an}的前n项和为Sn,满足对任意的正整数n,均有Sn+3=8Sn+3,则a1=$\frac{3}{7}$,公比q=2.

分析 设等比数列{an}的公比为q≠1.由Sn+3=8Sn+3,n≥2时,Sn+2=8Sn-1+3,可得an+3=8an,即q3=8,解得q.又S4=8S1+3,利用求和公式与通项公式即可得出.

解答 解:设等比数列{an}的公比为q≠1.
∵Sn+3=8Sn+3,
n≥2时,Sn+2=8Sn-1+3,可得an+3=8an
∴q3=8,解得q=2.
又S4=8S1+3,
∴a1(1+2+22+23)=8a1+3,解得a1=$\frac{3}{7}$.
故答案为:$\frac{3}{7}$,2.

点评 本题考查了等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=2sin(2x+$\frac{π}{3}$)的图象(  )
A.关于原点对称B.关于y轴对称
C.关于直线x=$\frac{π}{6}$对称D.关于点(-$\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则A∩B=(  )
A.B.$\{x|\frac{1}{2}<x≤1\}$C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$α∈(0,\frac{π}{2})$$β∈(0,\frac{π}{2})$,且$\frac{cosα}{sinα}=\frac{1-cosβ}{sinβ}$,则(  )
A.$α+β=\frac{π}{2}$B.$α+\frac{β}{2}=\frac{π}{2}$C.$α-\frac{β}{2}=\frac{π}{2}$D.$\frac{β}{2}-α=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数f(x)的单调递增区间.
(2)讨论函数f(x)的极大值或极小值,如果有,试写出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an} 的前n项和为${s_n}=6{n^2}-5n-4$,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过原点O作圆x2+y2-8x=0的弦OA,延长OA到N,使|OA|=|AN|,求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线与 椭圆x2+4y2=64共焦点,它的一条渐近线方程为$x-\sqrt{3}y=0$,则双曲线的方程为$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图(1),三棱锥P-ABC中,PC⊥平面ABC,F,G,H,分别是PC,AC,BC的中点,I是线段FG上任意一点,PC=AB=2BC,过点F作平行于底面ABC的平面截三棱锥,得到几何体DEF-ABC,如图(2)所示.
(1)求证:HI∥平面ABD;
(2)若AC⊥BC,求二面角A-DE-F的余弦值.

查看答案和解析>>

同步练习册答案