精英家教网 > 高中数学 > 题目详情
15.求分段函数f(x)=$\left\{\begin{array}{l}{2x+5,x<2}\\{3,x=2}\\{5x-1,x>2}\end{array}\right.$,在点x2=2处的极限.

分析 分左右极限求函数的极限,从而求函数的极限.

解答 解:∵$\underset{lim}{x→{2}^{-}}$(2x+5)=9,$\underset{lim}{x→{2}^{+}}$(5x-1)=9;
故$\underset{lim}{x→2}$f(x)=9.

点评 本题考查了分段函数的极限的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.若f(x)=3ax2+(b-2)x+1是定义在[-2-a,2a]上的偶函数,则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若某市8所中学参加中学生比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91    5.5B.91     5C.92     5.5D.92     5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②要得到函数y=sin($\frac{x}{2}$-$\frac{π}{4}$)的图象,只需将y=sin$\frac{x}{2}$的图象向右平移$\frac{π}{4}$个单位;
③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分不必要条件;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.其中正确的是(  )
A.①②④B.①③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\underset{lim}{x→∞}(\frac{{x}^{2}+1}{x+1}-ax-b)=0$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0),求:
(1)直角顶点C的轨迹方程;
(2)直角边BC的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数又在(-∞,0)上单调递增的是(  )
A.$f(x)=\frac{1}{x^2}$B.f(x)=x2+1C.f(x)=x3D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{2}x,x>2}\end{array}\right.$的值域为[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数y=x2+(2a-1)x+3在[2,+∞)上是增函数,则实数a的取值范围是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

同步练习册答案