精英家教网 > 高中数学 > 题目详情
5.已知f(x)=x2+1是定义在闭区间[-1,a]上的偶函数,则f(a)的值为2.

分析 根据偶函数的对称性可知a=1,代入解析式计算即可.

解答 解:∵f(x)=x2+1是定义在闭区间[-1,a]上的偶函数,∴a=1.∴f(a)=f(1)=2.
故答案为:2.

点评 本题考查了函数奇偶性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.过点M(-2,0)的直线l与圆x2+y2=1交于A、B两点,则线段AB的中点P的轨迹的长度为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sin($\frac{π}{4}$-θ)=$\frac{5}{13}$,0<θ<$\frac{π}{4}$,求cos2θ,cos($\frac{π}{4}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角A为锐角,则f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\frac{\sqrt{2}-1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{\sqrt{3}+1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x+1,g(x)=2x4-18x2+12x+68.
(1)如果不等式f(x)≥ax2+a对任意的x∈R恒成立,求实数a的取值范围;
(2)是否存在正实数M,使得不等式f(x)+$\sqrt{g(x)}$≥M对任意的x∈R恒成立,求出M的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,则x1+2x2+3x3+4x4+5x5的最小值是35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正数a,b,c满足b+c≥a,则$\frac{b}{c}$+$\frac{c}{a+b}$的最小值为$\sqrt{2}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知扇形的半径为3cm,圆心角为2弧度,则扇形的面积为9cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线x2-y2=1的渐近线方程是y=±x.

查看答案和解析>>

同步练习册答案