精英家教网 > 高中数学 > 题目详情

已知f(x)=ax2+bx+c(a≠0),其方程f(x)=x无实根.现有四个命题①方程f([f(x)]=x)也一定没有实数根;②a>0若,则不等式f[f(x)]≥0对一切x∈R成立;③若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.其中真命题的个数是


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:方程f(x)=x无实根,即ax2+(b-1)x+c=0无实根,则可知△<0,根据次条件可以判断真命题的个数.
解答:由题意方程f(x)=x无实根,即ax2+(b-1)x+c=0无实根,则可知△<0,则判断命题①正确,
若a>0,则f(x)开口向上,但无法判断△是否小于0,故命题②错误,
若a<0,则f(x)开口向下,根据命题②可判断命题③正确,
由以上判断,可知命题④正确,
故真命题个数为3;
故选C.
点评:本题主要考查函数的△判断方程的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2:已知f(x)=ax2+bx+c的图象过点(-1,0),是否存在常数a、b、c,使不等式x≤f(x)≤
x2+12
对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,则f(2)的取值范围是
[2,10]
[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在区间(
1
2
,1)
上不单调,则
3b-2
3a+2
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)无零点,则g(x)>0对?x∈R成立;
②若f(x)有且只有一个零点,则g(x)必有两个零点;
③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2-3ax+a2-1(a<0),则f(3),f(-3),f(
3
2
)从小到大的顺序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步练习册答案