精英家教网 > 高中数学 > 题目详情

【题目】如果既约分数满足为正整数),则称牛分数”.现将所有的牛分数按递增顺序排成一个数列称为牛数列”.证明对于牛数列中的任两个相邻项都满足

【答案】见解析

【解析】

对任一正整数,将牛数列中分母不大于的子数列记为

时,数列显然满足条件.

进行归纳.

据数列知,当时结论成立.

设结论对于成立,考虑数列

注意到,而中的分数满足:分母

中的一对相邻分数.

如果它们在中也相邻,则显然满足条件;

如果它们在中不相邻,即有中的分数插入它们之间(),即(插入的分数中总有一个与相邻,不妨设相邻).

于是,. ①

所以,

又易知,分数也介于之间(这是由于).

注意到,知互质,即为既约分数.

,由,相乘得

,得

,且中相邻,则,且式①中等号成立.

从而,,这与矛盾.

因此,

若分数,则. ②

中的相邻项,那么,对于前一对分数而言有

而对于后一对分数而言有

因此,插入后的分数列符合条件.

又由式②知,式①等号成立.于是,以及

,得. ③

因此,

中能够插入中的一对相邻分数之间的唯一分数,即在由数列过渡到数列时,不论相邻分数间是否插入了新的分数,所得数列都满足条件.

因此,对于每个正整数,结论成立.特别是数列满足条件,故本题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求所有的实数组(a、b、c),使得对任何整数n,都有.其中,表示不超过实数x的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】口袋中放有20个球,其中白球9个、红球5个、黑球6个,现从中任取10个球,使得白球不少于个不多于7个,红球不少于2个不多于5个、黑球不多于3个的取法种数是( )

A. 14 B. 24

C. 13 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序号

1

2

3

4

5

6

7

8

9

10

工业增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依据表格数据,得到下面的散点图及一些统计量的值.

5.5

20.6

82.5

211.52

129.6

(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).

(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);

(3)预测到哪一年的工业增加值能突破30万亿元大关.

附:样本 的相关系数

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:

1)该顾客中奖的概率;

2)该顾客获得的奖品总价值X元的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为的左、右顶点,上异于的动点,面积的最大值为2.

(1)求椭圆的方程;

(2)证明:直线与直线的斜率乘积为定值;

(3)设直线分别交直线两点,以为直径作圆,当圆的面积最小时,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】难度系数反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小.难度系数的计算公式为,其中,为难度系数,为样本平均失分,为试卷总分(一般为100分或150分).某校高三年级的李老师命制了某专题共5套测试卷(每套总分150分),用于对该校高三年级480名学生进行每周测试.测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:

试卷序号

1

2

3

4

5

考前预估难度系数

0.7

0.64

0.6

0.6

0.55

测试后,随机抽取了50名学生的数据进行统计,结果如下:

试卷序号

1

2

3

4

5

实测平均分

102

99

93

93

87

1)根据试卷2的难度系数估计这480名学生第2套试卷的平均分;

2)从抽样的50名学生的5套试卷中随机抽取2套试卷,记这2套试卷中平均分超过96分的套数为,求的分布列和数学期望;

3)试卷的预估难度系数和实测难度系数之间会有偏差.设为第套试卷的实测难度系数,并定义统计量,若,则认为本专题的5套试卷测试的难度系数预估合理,否则认为不合理.试检验本专题的5套试卷对难度系数的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,平面平面.

(1)证明:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知五棱锥PABCDE,其中ABEPCD均为正三角形,四边形BCDE为等腰梯形,BE=2BC=2CD=2DE=4,PBPE

Ⅰ)求证:平面PCD⊥平面ABCDE

Ⅱ)若线段AP上存在一点M,使得三棱锥PBEM的体积为五棱锥PABCDE体积的,求AM的长.

查看答案和解析>>

同步练习册答案