【题目】已知函数,.
(1)讨论函数的单调性;
(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.
【答案】(1)①当时, 在单调递增,②当时,单调递增区间为,,单调递减区间为
(2)证明见解析
【解析】
(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;
(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.
(1),
①当时,恒成立,则在单调递增
②当时,令得,
解得,
又,∴
∴当时,,单调递增;
当时,,单调递减;
当时,,单调递增.
(2)依题意得,,则
由(1)得,在单调递增,在上单调递减,在上单调递增
∴若方程有三个实数解,
则
法一:双偏移法
设,则
∴在上单调递增,∴,
∴,即
∵,∴,其中,
∵在上单调递减,∴,即
设,
∴在上单调递增,∴,
∴,即
∵,∴,其中,
∵在上单调递增,∴,即
∴.
法二:直接证明法
∵,,在上单调递增,
∴要证,即证
设,则
∴在上单调递减,在上单调递增
∴,
∴,即
(注意:若没有证明,扣3分)
关于的证明:
(1)且时,(需要证明),其中
∴
∴
∴
(2)∵,∴
∴,即
∵,,∴,则
∴
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为为正三角形,平面平面,是线段的中点,是线段上的动点.
(1)探究四点共面时,点位置,并证明;
(2)当四点共面时,求到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}满足a1=2,2a2=a4﹣a3,数列{bn}满足bn=1+2log2an.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn,求数列{cn}的前n项和Sn;
(3)若λ>0,且对所有的正整数n都有2λ2﹣kλ+2成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正数,记数列的前n项和为,数列的前n项和为,且.
(1)求的值;
(2)求数列的通项公式;
(3)若,且成等比数列,求k和t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相关指数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程,并求时直线的普通方程;
(2)直线和曲线交于、两点,点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).
(1)求圆C的直角坐标方程与直线l的普通方程;
(2)设直线l截圆C的弦长是半径长的倍,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点,F为焦点,面积为1.
(1)求抛物线C的方程;
(2)过点P引圆的两条切线PA、PB,切线PA、PB与抛物线C的另一个交点分别为A、B,求直线AB斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com