【题目】已知是定义在上的奇函数,且,若,时,有.
(1)证明在上是增函数;
(2)解不等式;
(3)若对,恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上有且只有一个极值点,求实数的取值范围;
(3)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为.
()当时,求直线被圆截得的弦长;
()当直线被圆截得的弦长最短时,求直线的方程;
()在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设表示学生注意力指标.
该小组发现随时间(分钟)的变化规律(越大,表明学生的注意力越集中)如下:(且).
若上课后第分钟时的注意力指标为,回答下列问题:
()求的值.
()上课后第分钟和下课前分钟比较,哪个时间注意力更集中?并请说明理由.
()在一节课中,学生的注意力指标至少达到的时间能保持多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右准线的方程为,焦距为.
(1)求椭圆的方程;
(2)过定点作直线与椭圆交于点(异于椭圆的左、右顶点)两点,设直线与直线相交于点.
①若,试求点的坐标;
②求证:点始终在一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在函数的图象上,数列的前项和为,数列的前 项和为,且是与的等差中项.
()求数列的通项公式.
()设,数列满足,.求数列的前项和.
()在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,,恒有成立,且(为常数,),试判断数列是否为等差数列,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com