精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C对应的边分别为a,b,c(a≤b≤c),且bcosC+ccosB=2asinA. (Ⅰ)求角A;
(Ⅱ)求证:
(Ⅲ)若a=b,且BC边上的中线AM长为 ,求△ABC的面积.

【答案】解:(Ⅰ)∵bcosC+ccosB=2asinA, ∴sinBcosC+sinCcosB=2sinAsinA,
即sin(B+C)=2sinAsinAsinA=2sinAsinA,
∵sinA>0,∴sinA=
∵a≤b≤c,
∴0<A≤
∴A=
(Ⅱ)∵a2﹣(2﹣ )bc=b2+c2﹣2bccos ﹣(2﹣ )bc=b2+c2﹣2bc=(b﹣c)2≥0,
∴a2≥(2﹣ )bc;
(Ⅲ)由a=b及(Ⅰ)知A=B=
∴C=
设AC=x,则MC= x,
又AM=
在△AMC中,由余弦定理得AC2+MC2﹣2ACMCcosC=AM2
即x2+( 2﹣2x cos120°=7,
解得:x=2,
则SABC= x2sin =
【解析】(Ⅰ)已知等式利用正弦定理化简,利用两角和与差的正弦函数公式及二倍角的正弦函数公式化简,再利用诱导公式化简求出sinA的值,即可确定出A的度数;(Ⅱ)表示出所证不等式左右两边之差,利用余弦定理及完全平方公式性质化简,判断差的正负即可得证;(Ⅲ)由a=b,得到A=B,求出C的度数,在三角形AMC中,由AM的长与cosC的值,求出AC的长,利用三角形面积公式求出三角形ABC面积即可.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某淘宝店经过对春节七天假期的消费者进行统计,发现在金额不超过1000元的消费者中男女比例为,该店按此比例抽取了100名消费者进行进一步分析,得到下表女性消费情况:

消费金额(元)

人数

5

10

15

47

3

男性消费情况:

消费金额(元)

人数

2

3

10

3

2

若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”

(1)分别计算女性和男性消费的平均数,并判断平均消费水平高的一方“网购达人”出手是否更阔绰?

(2)根据以上统计数据填写如下列联表,并回答能否在犯错误的概率不超过的前提下认为“是否为‘网购达人’与性别有关”.

女性

男性

合计

“网购达人”

“非网购达人”

合计

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,2sin(A+B)﹣ =0,c=
(1)求角C的大小;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知点A(﹣1,﹣2)和B(﹣3,6),直线l经过点P(1,﹣5).且与直线AB平行,求直线l的方程
(2)求垂直于直线x+3y﹣5=0,且与点P(﹣1,0)的距离是 的直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最大值与最小值;

(Ⅱ)讨论方程的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2,1), =(x,y)
(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足 =﹣1的概率;
(2)若x,y在连续区间[1,6]上取值,求满足 <0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的短轴长为2,以为中点的弦经过左焦点,其中点不与坐标原点重合,射线与以圆心的圆交于点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若四边形是矩形,求圆的半径;

(Ⅲ)若圆的半径为2,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(
A.
B. 与g(x)=2x﹣1
C.f(x)=x0与g(x)=1
D.f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1

查看答案和解析>>

同步练习册答案