精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱中,底面为等腰梯形, 分别是棱的中点.

(1)证明:直线平面

(2)求证:面.

【答案】(1)证明见解析 (2)证明见解析

【解析】试题分析:

(1)由题意结合几何关系可证得,结合线面平行的判断定理即可证得结论;

(2)由题意结合线面垂直的判断定理即可证得平面,然后利用面面垂直的判断定理即可证得面.

试题解析:

(1)在直四棱柱中,取的中点,连接 .

因为 ,且,所以,且 为平行四边形,所以.

又因为分别是棱的中点,

所以

所以

又因为平面 平面

所以直线平面.

(2)连接,在直棱柱中, 平面 平面

所以

因为底面为等腰梯形, 是棱的中点,

所以 为正三角形,

为等腰三角形,且

所以

又因为都在平面内且交于点

所以平面,而平面

所以面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )

A. yx具有正的线性相关关系

B. 若给变量x一个值,由回归直线方程=0.85x-85.71得到一个,则为该统计量中的估计值

C. 若该大学某女生身高增加1 cm,则其体重约增加0.85 kg

D. 若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

(1)求证: 不是上的奇函数;

(2)若上的单调函数,求实数的值;

(3)若函数在区间上恰有3个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆左、右焦点分别为顶点直的直线交负半轴于,且.

1椭圆离心

2点的圆恰好与直线切,求椭圆方程;

3直线2中椭圆交于不同的两点内切圆的面积是否存在最大值?存在,个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市园林局准备绿化一块直径为的半圆空地,以外的地方种草,的内接正方形为一水池,其余的地方种花,若为定值),,设的面积为,正方形的面积为

(1)用表示

(2)当为何值时,取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数

(1)求函数的值域;

(2)求方程,在内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为的导函数.

(1)求方程的解集;

(2)求函数的最大值与最小值;

(3)若函数在定义域上恰有2个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用10分制调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

)若教学满意度不低于9.5分,则称该生对教师的教学满意度为极满意.求从这16人中随机选取3人,至少有1人是极满意的概率;

)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到极满意的人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案